Navigation Links
Selfish DNA and the Genetic Control of Vector-Borne Diseases
Date:11/20/2007

Mosquito borne diseases such as malaria and dengue cause suffering and death around the world. Malaria alone causes at least one million deaths annually, and is particularly devastating in children under the age of five. In addition to the human toll, these diseases consume vast economic resources in the very communities that can least afford it. Various approaches to controlling these diseases such as insecticides, vaccine development, and preventive medicine have had limited success. The insect vectors responsible for spread of these diseases are widespread, numerous and adapt rapidly.

Another possibility for reducing the spread of disease by these insect vectors is genetically modifying the mosquitoes. Scientists have introduced genes into mosquitoes that render them unable to carry the human pathogens they often harbor and transmit to people. However, releasing these genetically modified mosquitoes into wild populations would not change the rate of disease transmission. In order to reduce pathogen transmission, it is critical that the modified mosquitoes supplant the wild population. Population genetics tells us that this is unlikely to occur under normal conditions even if huge numbers of modified mosquitoes are released into the wild.

One way to promote the spread of anti-pathogen genes in a population is by linking them with selfish genetic elements. Selfish genetic elements are pieces of DNA that propagate much more rapidly in populations than other DNA. By linking the desired genes with these rapidly spreading selfish elements, researchers believe that entire populations of mosquitoes can be changed from vectors of deadly pathogens to merely annoying pests.

There are a number of naturally occurring selfish genetic elements. The most familiar of these are transposable elements, often called jumping genes, but more exotic examples include sex ratio distorters, and gamete killers. Each selfish element uses a slightly different mechanism involving clever molecular manipulations which result in the reduction of other genotypes. Recently, a synthetic form of one of these selfish elements, the Medea element, was created by researchers. This tame selfish element may be more tractable in the development of effectively modified mosquitoes, bringing researchers closer to the goal of reducing the transmission of pathogens by insect vectors.

To accomplish this goal, researchers working on the molecular biology of selfish DNA must combine forces with entomologists and population geneticists who study these same genes at the level of the organism or populations of organisms. This is a challenge because most individual researchers tend to interact only with others in their fields and often have only a superficial understanding and appreciation for work on other aspects of selfish genetic elements. In part this is because scientists from these different backgrounds do not often have an opportunity to interact and this hampers their ability develop fruitful collaborations.

To overcome this isolation, the organizers of this meeting are bringing together leading scientists working on this problem from different perspectives to exchange information and discuss new approaches for using selfish genetic elements to control vector-borne diseases. This kind of synthetic, cross-fertilization can lead to breakthroughs in research and advance the field by creating opportunities for new collaborations. The organizers hope to move the research forward in this field and shorten the time-line for producing a practical solution to controlling disease vectors.

Selfish DNA and the Genetic Control of Vector-Borne Diseases

WHEN: December 5-7, 2007

WHERE: National Evolutionary Synthesis Center (NESCent), Durham, NC, USA

ORGANIZERS: Fred Gould, North Carolina State University; Steven Sinkins, University of Oxford; Daniel Hartl, Harvard University

CONTACT: Kristin Jenkins, NESCent Education and Outreach, 919.668.4544, kjenkins@nescent.org


'/>"/>

Contact: Kristin Jenkins
kjenkins@nescent.org
919-668-4544
National Evolutionary Synthesis Center (NESCent)
Source:Eurekalert

Related biology news :

1. Does the desire to consume alcohol and tobacco come from our genetic makeup?
2. Diverse genetic abnormalities lead to NF-κB activation in multiple myeloma
3. Many parents at-risk for cancer disclose genetic test results to children
4. Genetics determine optimal drug dose of common anticoagulant
5. Claims of sex-related differences in genetic association studies often not properly validated
6. American College of Medical Genetics responds to new FDA labeling decision for warfarin
7. UNC study questions FDA genetic-screening guidelines for cancer drug
8. Genome study shines light on genetic link to height
9. Selexis Announces Advanced Approach to Maximize Power of Genetic Elements for Rapid Development of High Performance Cell Lines
10. Genes, Environment and Health Initiative invests in genetic studies, environmental monitoring
11. Rutgers Genetics receives $7.8 million for autism research
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/20/2016)... , May 20, 2016  VoiceIt is ... partnership with VoicePass. By working together, ... experience.  Because VoiceIt and VoicePass take slightly different ... engines increases both security and usability. ... excitement about this new partnership. "This ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
(Date:4/26/2016)... DUBLIN , April 27, 2016 ... of the  "Global Multi-modal Biometrics Market 2016-2020"  report ... ) , The analysts forecast ... a CAGR of 15.49% during the period 2016-2020.  ... a number of sectors such as the healthcare, ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... the release of its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” ... and retention in this eBook by providing practical tips, tools, and strategies for ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. is ... has received AOAC Research Institute approval 061601. , “This is another AOAC-RI approval ... Bob Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods ...
(Date:6/23/2016)... 2016   EpiBiome , a precision microbiome engineering ... debt financing from Silicon Valley Bank (SVB). The financing ... advance its drug development efforts, as well as purchase ... "SVB has been an incredible strategic partner to us ... bank would provide," said Dr. Aeron Tynes Hammack ...
Breaking Biology Technology: