Navigation Links
Self-destructing bacteria improve renewable biofuel production

TEMPE, Ariz.- An Arizona State University research team has developed a process that removes a key obstacle to producing lower-cost, renewable biofuels. The team has programmed a photosynthetic microbe to self-destruct, making the recovery of high-energy fats--and their biofuel byproducts--easier and potentially less costly.

"The real costs involved in any biofuel production are harvesting the goodies and turning them into fuel," said Roy Curtiss, director of the Biodesign Institute's Center for Infectious Diseases and Vaccinology and professor in the School of Life Sciences. "This whole system that we have developed is a means to a green recovery of materials not requiring energy dependent physical or chemical processes."

Curtiss is part of a large, multidisciplinary ASU team that has been focusing on optimizing photosynthetic microbes, called cyanobacteria, as a source of renewable biofuels. These microbes are easy to genetically manipulate and have a potentially higher yield than any plant crops currently being used as transportation fuels.

But, until now, harvesting the fats from the microbes required many cost-intensive processing steps. Cyanobacteria have a multi-layer, burrito-like, protective set of outer membranes that help the bacteria thrive in even harsh surroundings, creating the pond scum often found in backyard swimming pools.

To get the cyanobacteria to more easily release their precious, high fat cargo, Curtiss and postdoctoral researcher Xinyao Liu, placed a suite of genes into photosynthetic bacteria that were controlled by the simple addition of trace amounts of nickel to the growth media.

"Genetics is a very powerful tool," said Liu. "We have created a very flexible system that we can finely control."

The genes were taken from a mortal bacterial enemy, called a bacteriaphage, which infect the bacteria, eventually killing the microbes by causing them to burst like a balloon. The scientists swapped parts from bacteriaphages that infect E. coli and salmonella, simply added nickel to the growth media, where the inserted genes produced enzymes that slowly dissolved the cyanobacteria membranes from within (see figure 1).

This is the first case of using this specialized bacterial system and placing it in cyanobacteria to cause them to self-destruct. "This system is probably one of a kind," said Curtiss, who has filed a patent with Xinyao Liu on the technology. Curtiss has been a pioneer in developing new vaccines, now working on similar systems to develop a safe and effective pneumonia vaccine.

The project is a prime example of the multidisciplinary, collaborative spirit of ASU research. Other key contributors were School of Life Sciences professor Wim Vermaas, an expert on the genetic manipulation techniques of cyanobacteria, Robert Roberson, for help with transmission electron microscopy, Daniel Brune, who did mass spectrometer analyses of the lipid products, and many other colleagues in the ASU biofuel project team.

The project has also been the beneficiary of the state of Arizona's recent strategic investments to spur new innovation that may help foster future green and local industries. The state's abundant year-round sunshine and warm temperatures are ideally suited for growing cyanobacteria.

"This probably would never have gone anywhere if Science Foundation Arizona or BP had not funded the project," said Curtiss. The $5 million in funding was key to scaling up and recruiting new talent to work on the project, including paper first author Xinyao Liu, an expert in microbiology and genetics who had recently earned his Ph.D. from the prestigious Peking University in Beijing, China.

"Xinyao is unique," said Curtiss. "If he were a baseball player, he wouldn't be satisfied with anything less than a 1000 home runs in 10 years. Xinyao is always swinging for the fences. Now, we are moving forward with a number of new approaches to see how far we can push the envelope." The next phase of the research is being funded by a two-year, $5.2 million grant from the U.S. Department of Energy (DOE) led by researcher Wim Vermaas, Curtiss, Liu and others from the ASU biofuel team.


Contact: Joe Caspermeyer
Arizona State University

Related biology news :

1. Shuttle brings space-grown strep bacteria back for study
2. The worlds oldest bacteria
3. Bacteria from sponges make new pharmaceuticals
4. Boston University biomedical engineers find chink in bacterias armor
5. University of Leicester scientists discover technique to help friendly bacteria
6. Spaceflight shown to alter ability of bacteria to cause disease
7. A tiny pinch from a z-ring helps bacteria cells divide
8. Legionnaires bacterial proteins work together to survive
9. Scripps research team blocks bacterial communication system to prevent deadly staph infections
10. NSF awards Stevens team $1 million for research on smart, bacteria-repellent nanohydrogels
11. Chemical compound present in detergents produce bacteria alterations in agricultural soils
Post Your Comments:
(Date:11/20/2015)... OXFORD, Connecticut , November 20, 2015 ... biometric authentication company focused on the growing mobile commerce ... its CEO, Gino Pereira , was recently interviewed ... The interview will air on this weekend on ... Bloomberg Latin America . --> NXTD ) ...
(Date:11/17/2015)... -- Paris from 17 th ... Paris from 17 th until 19 th ... has invented the first combined scanner in the world which ... surface. Until now two different scanners were required: one for ... on the same surface. This innovation is an ideal ...
(Date:11/12/2015)... -- A golden retriever that stayed healthy despite having the ... a new lead for treating this muscle-wasting disorder, report ... MIT and Harvard and the University of São Paolo ... Cell, pinpoints a protective gene that boosts muscle ... Boston Children,s lab of Lou Kunkel , PhD, ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... , Nov. 25, 2015  PharmAthene, Inc. (NYSE ... has adopted a stockholder rights plan (Rights Plan) in ... operating loss carryforwards (NOLs) under Section 382 of the ... --> PharmAthene,s use of its NOLs could ... change" as defined in Section 382 of the Code. ...
(Date:11/25/2015)... 25, 2015  Neurocrine Biosciences, Inc. (Nasdaq: NBIX ... and CEO of Neurocrine Biosciences, will be presenting at ... New York . .   ... approximately 5 minutes prior to the presentation to download ... presentation will be available on the website approximately one ...
(Date:11/25/2015)... November 25, 2015 The ... is a professional and in-depth study on the ...      (Logo: ) , ... industry including definitions, classifications, applications and industry chain ... the international markets including development trends, competitive landscape ...
(Date:11/24/2015)... , Nov. 24, 2015 Cepheid (NASDAQ: ... be speaking at the following conference, and invited investors ... York, NY      Tuesday, December 1, 2015 at ... York, NY      Tuesday, December 1, 2015 at ... Healthcare Conference, New York, NY ...
Breaking Biology Technology: