Navigation Links
Selectively manipulating protein modifications
Date:3/10/2013

This press release is available in German.

Protein activity is strictly regulated. Incorrect or poor protein regulation can lead to uncontrolled growth and thus cancer or chronic inflammation. Members of the Institute of Veterinary Biochemistry and Molecular Biology from the University of Zurich have identified enzymes that can regulate the activity of medically important proteins. Their discovery enables these proteins to be manipulated very selectively, opening up new treatment methods for inflammations and cancer.

For a healthy organism, it is crucial for proteins to be active or inactive at the right time. The corresponding regulation is often based on a chemical modification of the protein structure: Enzymes attach small molecules to particular sites on a protein or remove them, thereby activating or deactivating the protein. Members of the Institute of Veterinary Biochemistry and Molecular Biology from the University of Zurich in collaboration with other Institutes have now discovered how the inactivation of a protein, which is important for medicine, can be reversed.

New group of ADP-ribosylhydrolases identified

An important protein modification is ADP-ribosylation, which is involved in certain types of breast cancer, cellular stress reactions and gene regulation. So-called ADP-ribosyltransferases attach the ADP ribose molecule to proteins, thereby altering their function. In recent years, many ADP-ribosyltransferases have been discovered that can convey single or several ADP-riboses to different proteins. Enzymes that can remove these riboses again, however, are less well known. Professor Michael Hottiger's team of researchers has now identified a new group of such ADP-ribosylhydrolases. The scientists discovered that a so-called macrodomain is responsible for removing the ADP-riboses in human proteins, but also in the bacterium Archaeoglobus fulgidus.

"We therefore assume that the reversal of the modification takes place in a similar way in different species," explains Michael Hottiger.

Biomedically relevant: inactivation of the modified enzyme GSK3β

The researchers also prove that ADP-ribosylhydrolases can remove the ADP-ribose of the intensively studied enzyme GSK3β, which regulates the synthesis of storage substances and is important in the progression of various diseases. ADP-ribosylation deactivates GSK3β, which can be reversed again by the newly identified enzyme. "Our discovery enables ADP-ribose modification to be manipulated and tested selectively, and new treatment methods developed for diseases such as inflammations or cancer," concludes Michael Hottiger.


'/>"/>

Contact: Michael Hottiger
hottiger@vetbio.uzh.ch
41-446-355-474
University of Zurich
Source:Eurekalert

Related biology news :

1. Research breakthrough selectively represses the immune system
2. Experimental drug combination selectively destroys lymphoma cells
3. Manipulating chromatin loops to regulate genes may offer future treatments for blood diseases
4. Manipulating the microbiome could help manage weight
5. IU biologists offer clearer picture of how protein machine systems tweak gene expression
6. Making memories: How 1 protein does it
7. Embryonic development protein active in cancer growth
8. More effective method of imaging proteins
9. The loss of a protein makes jump the tumor to the lymph node
10. Gold nanoantennas detect proteins
11. The Japanese traditional therapy, honokiol, blocks key protein in inflammatory brain damage
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... NEW YORK , April 5, 2017 ... security, is announcing that the server component of the ... is known for providing the end-to-end security architecture that ... customers. HYPR has already secured over 15 ... system makers including manufacturers of connected home product suites ...
(Date:3/30/2017)... ANGELES , March 30, 2017  On April ... Hack the Genome hackathon at Microsoft,s ... exciting two-day competition will focus on developing health and ... Hack the Genome is the ... been tremendous. The world,s largest companies in the genomics, ...
(Date:3/28/2017)... India , March 28, 2017 ... IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), Software ... Vertical, and Region - Global Forecast to 2022", published ... Billion in 2016 and is projected to reach USD ... between 2017 and 2022. The base year considered for ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... SomaGenics announced the receipt of a Phase ... (Single Cell), expected to be the first commercially available ... from single cells using NGS methods. The NIH,s recent ... development of approaches to analyze the heterogeneity of cell ... for measuring levels of mRNAs in individual cells have ...
(Date:10/9/2017)... ... October 09, 2017 , ... The award-winning American Farmer ... first quarter 2018. American Farmer airs Tuesdays at 8:30aET on RFD-TV. , With ... with the challenge of how to continue to feed a growing nation. At the ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... applications consulting for microscopy and surface analysis, Nanoscience Instruments is now expanding ... offers a broad range of contract analysis services for advanced applications. Services ...
(Date:10/6/2017)... (PRWEB) , ... October 06, 2017 , ... ... host a lunch discussion and webinar on INSIGhT, the first-ever adaptive clinical trial ... Investigator, Dana-Farber Cancer Institute. The event is free and open to the public, ...
Breaking Biology Technology: