Navigation Links
Selaginella genome adds piece to plant evolutionary puzzle

WEST LAFAYETTE, Ind. - A Purdue University-led sequencing of the Selaginella moellendorffii (spikemoss) genome - the first for a non-seed vascular plant - is expected to give scientists a better understanding of how plants of all kinds evolved over the past 500 million years and could open new doors for the identification of new pharmaceuticals.

Jody Banks, a professor of botany and plant pathology, led a team of about 100 scientists from 11 countries to sequence the genome of Selaginella, a lycophyte. Lycophytes, which are the oldest living vascular plants, shed spores to reproduce and have a single vascular vein through their leaves, as opposed to more complex vascular plants.

"There are only three families and about 1,000 species of lycophytes remaining. Selaginella has been on Earth about 200 million years," said Banks, whose findings were published Thursday (May 5) in the journal Science. "This plant is a survivor. It has a really long history and it hasn't really changed much over time. When you burn coal, you're burning the Carboniferous relatives of these plants."

Banks said the Selaginella genome, with about 22,300 genes, is relatively small. Scientists also discovered that Selaginella is the only known plant not to have experienced a polyploidy event, in which it creates one or more extra sets of chromosomes.

Selaginella also is missing genes known in other plants to control flowering, phase changes from juvenile plants to adults and other functions.

"It does these in a totally unknown way," Banks said.

Banks said Selaginella's genome would help scientists understand how its genes give the plant some of its unique characteristics. The genome also will help them understand how Selaginella and other plants are evolutionarily connected.

In comparing this genome sequence with others, researchers were able to identify genes that are present only in vascular plants and genes present only in flowering plants. These genes likely played important roles in the early evolution of vascular and flowering plants, respectively. Many of these genes have unknown functions, but it is likely that those genes that are present only in flowering plants may function in the development of fruits and seeds, which are important to agriculture.

"For many plant genes, we have no idea what their function is," Banks said. "Knowing this gives us ideas. It's an important piece of the puzzle in understanding how plants evolved."

Banks also noted that Selaginella and Arabidopsis thaliana, a plant widely used in research, use significantly different genes to control creation of secondary metabolites, molecules that are responsible for creating scents, seed dispersal functions, defense and other tasks. Those secondary metabolites also are used to create pharmaceuticals.

"These metabolic genes evolved independently in Selaginella and flowering plants, so the metabolites they make are likely to be very different," Banks said. "This means Selaginella could be a huge resource for new pharmaceuticals."

Banks said the genome sequence would now be mined for more information as scientists learn more about plant evolution and applications for Selaginella's genes.


Contact: Brian Wallheimer
Purdue University

Related biology news :

1. Scientists sequence genomes of 2 major threats to American food and fuel
2. Genome duplication encourages rapid adaptation of plants
3. Rices origins point to China, genome researchers conclude
4. Study in roundworm chromosomes may offer new clues to tumor genome development
5. Evolution can cause a rapid reduction in genome size
6. Bacterial genome may hold answers to mercury mystery
7. Simpler woodland strawberry genome aids research on more complex fruits
8. Teaching old genomes new tricks
9. Surprising results in the first genome sequencing of a crustacean
10. First harmful algal bloom species genome sequenced
11. Brown tide culprit sequenced: Genome of the first of algal bloom species
Post Your Comments:
Related Image:
Selaginella genome adds piece to plant evolutionary puzzle
(Date:4/19/2017)... April 19, 2017 The global ... landscape is marked by the presence of several large ... held by five major players - 3M Cogent, NEC ... accounted for nearly 61% of the global military biometric ... in the global military biometrics market boast global presence, ...
(Date:4/13/2017)... India , April 13, 2017 According to ... Proofing, Identity Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, ... MarketsandMarkets™, the IAM Market is expected to grow from USD 14.30 Billion ... Growth Rate (CAGR) of 17.3%. ... MarketsandMarkets ...
(Date:4/11/2017)... NXT-ID, Inc. (NASDAQ:   NXTD ) ("NXT-ID" or ... independent Directors Mr. Robin D. Richards and Mr. ... the company,s corporate governance and expertise. ... Gino Pereira , Chief Executive Officer said," ... and benefiting from their considerable expertise as we move forward ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... CA, USA (PRWEB) , ... October 11, 2017 , ... ... to take place on 7th and 8th June 2018 in San Francisco, CA. The ... influencers as well as several distinguished CEOs, board directors and government officials from around ...
(Date:10/11/2017)... INDIANAPOLIS , Oct. 11, 2017  VMS BioMarketing, a ... of a nationwide oncology Clinical Nurse Educator (CNE) network, which ... growing need for communication among health care professionals to enhance ... physicians, nurses, office staff, and other health care professionals to ... for breast cancer. ...
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased emissions ... over 5.5 million people each year. Especially those living in larger cities are affected ... based in one of the most pollution-affected countries globally - decided to take action. ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... has granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and ... of osteosarcoma. SBT-100 is able to cross the cell membrane and bind intracellular ...
Breaking Biology Technology: