Navigation Links
Seeing the forest through the trees and seeing the trees through the leaves
Date:1/13/2010

Since the time of the earliest humans, people have attempted to understand the natural environment. We have observed our surroundings and searched for explanations for natural phenomena. Yet despite our persistence over thousands of years, many basic questions remain to be answered. Although we understand core processes such as photosynthesis, we do not have a full understanding of issues such as how plants maximize their photosynthetic capacity.

Specific leaf area, or SLA, plays a prominent role in ecological theories that attempt to provide explanations for plant and ecosystem function. SLA, a measurement of the total leaf area to dry mass, has been found to correlate with the potential for light-resource use, the relative growth rate of a plant, and differences in essential nutrient demand and habitat preference.

Scientists also have observed that the SLA of individual leaves varies within a single plant, and this measurement often correlates with leaf maturation and position within the canopy. More recently, scientists have discovered that, as a tree increases in size, its total canopy SLA decreasesthat is to say, its total leaf surface area fails to keep pace with increases in total leaf mass.

What causes this decrease in SLA as tree size increases has remained a mystery, but recent research by Cornell University scientists Karl Niklas and Edward Cobb published in the January issue of the American Journal of Botany (http://www.amjbot.org/cgi/content/full/97/1/27) provides an explanation for this decrease in SLA with an increase in tree size.

"The traditional explanation for the size-dependent decrease in SLA was never very satisfying," Niklas said. "We wanted to look at this phenomena in greater details with more care, and we found a totally different answer to a classic ecological question."

The commonly accepted hypothesis has been that decreasing SLA in trees of increasing size is a result of leaf-by-leaf acclimation to the local environment. Physical factors such as differences in light intensity are affected by differences in leaf position within the canopy, providing different local environments. Niklas and Cobb hypothesized that changes in SLA may be a result of changes in the relative numbers of different shoot types that produce leaves differing in SLAsa developmental shift that occurs as a tree increases in size.

Niklas and Cobb examined 15 red maple trees that differed in trunk size and found that the changes in SLA can be attributed to shoot type rather than to the location of the leaves within the canopy. As the trunk diameter increased, the number of short-shoots increased rapidly relative to the number of long-shoots. Detailed analyses of the largest tree demonstrated that short shoots, on average, produce leaves with smaller specific leaf areas than those produced by long shoots. Consequently, developmental shifts occurring at the shoot and whole plant level account for size-dependent decreases in total canopy SLA, rather than leaf-by-leaf acclimation to the local environment.

Mathematical models for the distribution of light within the canopy predict that the photosynthetic rate of the entire canopy is maximized when the specific leaf area is lowest for leaves at the top of the canopy. This research provides new insight into the mechanism by which trees have evolved to obtain light and photosynthesize at the greatest rate.

"Our research shows that plants are highly integrated organisms that respond to their environments in ways that are every bit as complex as even the most sophisticated animals," Niklas said. "This research also shows that we still have plenty to learn about phenomena that we thought we understood very well."


'/>"/>

Contact: Richard Hund
rhund@botany.org
314-577-9557
American Journal of Botany
Source:Eurekalert

Related biology news :

1. Seeing Alzheimers amyloids
2. Crystal (eye) ball: Study says visual system equipped with future seeing powers
3. Seeing through the skin
4. Seeing stem cells helps in fight against peripheral arterial disease
5. Seeing the tree from the forest: Predicting the future of plant communities
6. Seeing previously invisible molecules for the first time
7. Seeing is relieving
8. Seeing without looking
9. Seeing how evolutionary mechanisms yield biological diversity
10. Seeing family for the holidays? Scientists discover how the stress might kill you
11. Tropical insects go the distance to inform rainforest conservation
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... Allen Institute for Cell Science today announces the launch ... dynamic digital window into the human cell. The website ... deep learning to create predictive models of cell organization, ... suite of powerful tools. The Allen Cell Explorer will ... resources created and shared by the Allen Institute for ...
(Date:4/4/2017)...   EyeLock LLC , a leader of iris-based ... Patent and Trademark Office (USPTO) has issued U.S. Patent ... an iris image with a face image acquired in ... 45 th issued patent. "The ... the multi-modal biometric capabilities that have recently come to ...
(Date:3/30/2017)... HONG KONG , March 30, 2017 ... developed a system for three-dimensional (3D) fingerprint identification by adopting ground ... technology into a new realm of speed and accuracy for use ... applications at an affordable cost. ... ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... of a complex biological network, a depiction of a system of linkages and ... Dmitry Korkin, PhD, associate professor of computer science at Worcester Polytechnic Institute (WPI) ...
(Date:10/12/2017)... , ... October 12, 2017 , ... ... Vilnius, Lithuania, announced today that they have entered into a multiyear collaboration to ... provide CRISPR researchers with additional tools for gene editing across all applications. , ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... with the addition of its newest module, US Hemostats & Sealants. , SmartTRAK’s ... hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used in surgical ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... analysis platform specifically designed for life science researchers to analyze and interpret ... Rosalind Franklin, who made a major contribution to the discovery of the ...
Breaking Biology Technology: