Navigation Links
Seeing how evolutionary mechanisms yield biological diversity
Date:12/22/2009

COLLEGE PARK, Md. -- An international team of scientists has discovered how changes in both gene expression and gene sequence led to the diversity of visual systems in African cichlid fish.

In research published in the December 21, 2009 issue of the journal PLoS Biology, Assistant Professor Karen Carleton, together with post-doctoral associate Chris Hofmann and graduate student Kelly O'Quin, in the University of Maryland Department of Biology, and collaborators Justin Marshall, University of Queensland; Tom Cronin, University of Maryland, Baltimore County (UMBC); and Ole Seehausen, University of Bern; describe how over 60 species of cichlid fish from Lake Malawi and Lake Victoria have adapted their visual sensitivity in response to specific ecological factors, including what they eat and the clarity of the water in which they swim.

Evolutionary biologists seek to understand the mechanisms behind genetic changes that have led to the vast diversity of life on Earth. There are two important molecular mechanisms that contribute to organismal diversity - changes to the sequence of genes, and changes in the way genes are expressed, including when, where, and how much of a gene is made. This study was one of the first to look at how both gene sequence and gene expression can contribute to the same trait, and showed that they contribute in complementary ways.

"African cichlid fishes are some of the most diverse animals on the planet. Their visual systems differ dramatically in their sensitivity and represent some of the largest differences known in vertebrates," explains Hofmann. "Yet there has been little understanding as to why such diversity exists. Our findings have important implications for understanding both the factors and the mechanisms responsible for generating biodiversity."

Cichlids have several different cone opsin genes that enable them to detect light across the visible and ultraviolet regions of the spectrum. Different species express different subsets of these opsins to create alternate visual systems. The research team found that cichlid fish in the clear waters of Lake Malawi expressed a wide range of opsins, with closely related species differing in whether they used the shorter wavelength or longer wavelength gene combinations.

The method of foraging for food was a key factor influencing fish vision. Fish whose diets consist primarily of zooplankton were more likely to have UV sensitivity, which enables them to detect the presence of these small transparent aquatic organisms that absorb ultraviolet light. In contrast, cichlids in the murky waters of Lake Victoria expressed longer wavelength combination of opsin genes, regardless of what they ate.

This long wavelength combination matches the light that is best transmitted through the murky water. A few Lake Victoria fish at clearer sites turned on shorter wavelength genes, suggesting that opsin expression matches the light environment. Therefore opsin gene expression in both lakes is adaptively determined based on important ecological variables.

The authors also examined changes in the genetic sequence of these opsins that fine-tuned visual pigment sensitivity at the short and long-wavelength ends of the spectral range.

"When you get to the extremes of the light spectrum, there is no other gene that can be turned on or off, so the only way to extend the sensitivity is to change the gene structure itself," says O'Quin. Therefore, this study presents a model of sensory evolution in which both molecular genetic mechanisms work in concert.

For a copy of the paper go to: http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1000266

Previous work by Ole Seehausen, Karen Carleton, Nori Okada and colleagues (Nature, 455, 620-626, 2 October 2008) has demonstrated that color vision plays a key role in how cichlids recognize different species and choose mates. (Read more about thiis work here: http://www.newsdesk.umd.edu/scitech/release.cfm?ArticleID=1752)

"Previously, we showed that changes in opsin gene sequence contributed to generating new species," says Carleton. "The speed with which opsin gene expression changes suggests that it might also contribute to creating the incredible diversity of cichlid fishes."

The authors are extending their work to other African Great Lakes and even to coral reef fishes, to better understand how biodiversity is formed.


'/>"/>

Contact: Kelly Blake
kellyb@umd.edu
443-851-0272
University of Maryland
Source:Eurekalert

Related biology news :

1. Seeing Alzheimers amyloids
2. Crystal (eye) ball: Study says visual system equipped with future seeing powers
3. Seeing through the skin
4. Seeing stem cells helps in fight against peripheral arterial disease
5. Seeing the tree from the forest: Predicting the future of plant communities
6. Seeing previously invisible molecules for the first time
7. Seeing is relieving
8. Seeing family for the holidays? Scientists discover how the stress might kill you
9. Clones on task serve greater good, evolutionary study shows
10. Adaptation to parasites drive African fishes along different evolutionary paths
11. Old developmental pathways spawn revolutionary evolutionary changes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/12/2016)... DALLAS , May 12, 2016 ... has just published the overview results from the Q1 ... of the recent wave was consumers, receptivity to a ... wearables data with a health insurance company. ... choose to share," says Michael LaColla , CEO ...
(Date:5/3/2016)... 2016  Neurotechnology, a provider of high-precision biometric ... Biometric Identification System (ABIS) , a complete system ... ABIS can process multiple complex biometric transactions with ... fingerprint, face or iris biometrics. It leverages the ... MegaMatcher Accelerator , which have been used ...
(Date:4/28/2016)... First quarter 2016:   , ... the first quarter of 2015 The gross margin was ... 18.8) and the operating margin was 40% (-13) Earnings ... flow from operations was SEK 249.9 M (21.2) , ... SEK 7,000-8,500 M. The operating margin for 2016 is ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the ... the Supplyframe Design Lab . Located in Pasadena, Calif., the Design Lab’s ... how hardware projects are designed, built and brought to market. , The Design ...
(Date:6/23/2016)... ... , ... In a new case report published today in STEM CELLS Translational ... lymphedema after being treated for breast cancer benefitted from an injection of stem cells ... this debilitating, frequent side effect of cancer treatment. , Lymphedema refers to ...
(Date:6/23/2016)... 23, 2016  Blueprint Bio, a company dedicated to ... medical community, has closed its Series A funding round, ... "We have received a commitment from Forentis ... need to meet our current goals," stated Matthew ... runway to complete validation on the current projects in ...
(Date:6/23/2016)... 23, 2016 On Wednesday, June 22, ... down 0.22%; the Dow Jones Industrial Average edged 0.27% lower ... 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage on the following ... Therapeutics (NASDAQ: NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ... BIND ). Learn more about these stocks by accessing ...
Breaking Biology Technology: