Navigation Links
Second-generation device more effective in capturing circulating tumor cells
Date:10/12/2010

A redesigned version of the CTC-Chip a microchip-based device for capturing rare circulating tumor cells (CTCs) appears to be more effective and should be easier to manufacture than the original. Called the HB-(herringbone) Chip, the new device also may provide more comprehensive and easily accessible data from captured tumor cells. Massachusetts General Hospital (MGH) researchers including members of the team that developed the CTC-Chip report the second-generation device in a Proceedings of the National Academy of Sciences paper that has been released online.

"The originally CTC-Chip worked wonderfully in a small-scale laboratory setting, but limitations arose when we attempted to increase production for larger clinical studies. The new device performs as well or better than the previous technology with several additional benefits," says Shannon Stott, PhD, of the MGH Center for Engineering in Medicine, co-lead author of the PNAS paper. "It also was able to capture something that had never been seen using either the CTC-chip or the most prevalent previous technology small clusters of CTCs, the significance of which we need to study."

CTCs are living solid tumor cells found at extremely low levels in the bloodstream. Until the 2007 development of the CTC-chip by researchers from the MGH Cancer Center and the Center for Engineering in Medicine, it was not possible to get information from CTCs that would be useful for clinical decision making.

In the original device, patient blood samples are passed over a silicon chip covered with microscopic posts coated with an antibody that binds to most tumor cells. Not only did this design proved challenging to manufacture reliably and cost-effectively, but the smooth flow of blood around the microposts also limited the number of CTCs that came into contact with the antibody-covered surfaces. In their search to increase the capture of CTCs, the researchers found that passing samples through a chamber lined with a herringbone pattern of grooves an approach developed elsewhere for quickly mixing independent streams of fluid would generate a more chaotic flow that could significantly increase the number of captured cells.

The HB-Chip also can process larger-volume blood samples, increasing the ability to find rare CTCs. The microchip is mounted on a standard glass slide, which allows the use of standard pathology tests to identify cancer cells; and the device can be easily opened, giving access to CTCs for additional testing and growth in culture. Experiments comparing the HB-Chip to the CTC-chip found the new device captured more than 90 percent of cancer cells introduced into blood samples a 25 percent improvement over the CTC-chip. Tests of samples from cancer patients found the redesigned device at least as effective as the original.

The HB-Chip also captured clusters of 4 to 12 CTCs from several patient samples but not from samples to which cancer cells had been added. No previous technology for capturing CTCs has ever found such clumps of tumor cells. "These clusters may have broken off from the original tumor, or they might represent proliferation of CTCs within the circulation," says Mehmet Toner, PhD, director of the BioMicroElectroMechanical Systems Resource Center in the MGH Center for Engineering in Medicine, the paper's senior author. "Further study of these clusters could provide valuable insight in the metastatic process."

Daniel Haber MD PhD, director of the MGH Cancer Center and a co-author of the study, says, "This new technology is a powerful platform that will enable increasingly sophisticated analyses of metastasis and support clinical research in targeted cancer therapies."

While the MGH has filed a patent for the HB-Chip, the research team will continue to develop the technology before potential licensing is explored. The study was supported by grants from Stand Up to Cancer, the Prostate Cancer Foundation, the National Institute for Biomedical Imaging and Bioengineering, the National Cancer Institute and the American Cancer Society, along with several additional funders.


'/>"/>

Contact: Katie Marquedant
kmarquedant@partners.org
617-726-0337
Massachusetts General Hospital
Source:Eurekalert  

Related biology news :

1. De La Rue Provides Second-Generation ePassport for Malta
2. Kount Receives Patent for Device Fingerprinting
3. Nanodiamond drug device could transform cancer treatment
4. Caltech engineers build firast-ever multi-input plug-and-play synthetic RNA device
5. Linking Proteins, Wires, Dots, and Molecules into Useful Devices
6. NC State finds new nanomaterial could be breakthrough for implantable medical devices
7. Futronic Launches FS22 Fingerprint Access Control Device
8. BIO-key(R) Granted Patent for Trusted Biometric Device Security Solution
9. NIST-Cornell team builds worlds first nanofluidic device with complex 3-D surfaces
10. Device protects transplanted pancreatic cells from the immune system
11. Chemical found in medical devices impairs heart function
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Second-generation device more effective in capturing circulating tumor cells
(Date:3/29/2016)... BOCA RATON, Florida , March 29, 2016 /PRNewswire/ ... ("LegacyXChange" or the "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect ... Synthetic DNA in ink used in a variety of ... preventing theft. Buyers of originally created collectibles from athletes ... authenticity through forensic analysis of the DNA. ...
(Date:3/18/2016)... LONDON , March 18, 2016 ... Established Suppliers of Biometrics, ICT, Manned & Unmanned Vehicles, Physical ... & security companies in the border security market and ... and Europe has led ... your companies improved success. --> defence & ...
(Date:3/14/2016)... 2016 http://www.apimages.com ) - ... - Renvoi : image disponible via AP Images ... --> DERMALOG, le leader de ... lecteurs d,empreintes digitales pour l,enregistrement des réfugiés en ... pour produire des cartes d,identité aux réfugiés. DERMALOG ...
Breaking Biology News(10 mins):
(Date:4/27/2016)... ... April 27, 2016 , ... ... technology at the Spring 2016 Marijuana Business Conference and Expo. Shimadzu’s high-performance instruments ... heavy metals, and more. Expo attendees can stop by booth 1021 to learn ...
(Date:4/27/2016)... Columbia , April 27, 2016 ... "NanoStruck") (CSE: NSK) (OTCPink: NSKQB) ( Frankfurt ... Anschluss an ihre Pressemitteilung vom 13. August 2015 ... hat, ihre Finanzen um zusätzliche 200.000.000 Einheiten auf ... Kanadische Dollar zu bringen. Davon wurden 157.900.000 Einheiten ...
(Date:4/27/2016)... VIRGINIA (PRWEB) , ... April 27, 2016 , ... ... today that Jon Clark has joined the company as an Expert Consultant. ... responsible for industry collaborations and managing the development of small molecule monographs based ...
(Date:4/27/2016)... ... ... Global Stem Cells Group CEO Benito Novas announced that Duncan Ross, ... Kimera Labs in Miami. , In 2004, Ross received his Ph.D. in Immunology from ... and the suppression of graft vs. host disease (GVHD) under UM Professor Robert Levy ...
Breaking Biology Technology: