Navigation Links
Seattle Children's Hospital leads $23.7 million NIH grant to study gene repair
Date:9/6/2007

SEATTLE: Sept. 6, 2007 Seattle Childrens Hospital will receive the largest research grant in its 100-year history for a new five-year, eleven-part grant awarded by the National Institutes of Health (NIH) to study gene repair. The $23.7 million grant will support the Northwest Genome Engineering Consortium, led by Andrew M. Scharenberg, MD, of Seattle Childrens Hospital Research Institute in partnership with the University of Washington School of Medicine (UWSOM) and Fred Hutchinson Cancer Research Center. Approximately $13.2 million will be directly awarded to Childrens, with $5.3 million going to UWSOM and $5.2 million to the Hutchinson Center.

The project is funded by the NIH Roadmap for Medical Research, a new type of NIH grant program designed to address especially complex problems in research that require expertise across multiple scientific disciplines. This large award comes fresh on the heels of Childrens Hospital being ranked ninth in the nation among the countrys top pediatric hospitals, at a time when Childrens is significantly expanding its research agenda, facilities and staff. During the past year Childrens has acquired nearly four acres and 1.5 million developable-square feet of research property in downtown Seattles prime biotech corridor.

The Northwest Genome Engineering Consortium (NGEC) is collaborative research composed of 11 different projects that will build upon each other to develop methods for gene repair, an innovative approach to gene therapy. Gene repair involves manipulating defective sequences of DNA in a targeted gene to change them to the correct sequence, restoring the gene to normal function and eliminating the cause of the patients inherited disease. Gene repair requires multiple scientific disciplines to generate new kinds of proteins that can perform the required manipulations and then deliver them to a patients diseased tissues.

With this research we hope to develop new and efficient approaches for gene repair in certain types of stem cells and other tissues, and use these methods to improve treatments for genetic diseases affecting these tissues, said Scharenberg.

While gene repair ultimately may be useful against a wide range of diseases, Scharenberg believes single-gene inherited disorders of the lymph and bone-marrow systems such as immune deficiencies, Sickle Cell Disease and thalassemias are the best place to start.

Collectively, these disorders are a major global disease burden in children. The target cells in these diseases that will be manipulated by the gene-repair process are blood stem cells, and they are readily accessible. By working with these disorders, the NGEC will build upon Seattles strong regional expertise and reputation in this type of stem-cell transplantation.

We hope it will be possible to remove a patients existing blood stem cells, repair defective genes in these cells, and then return them back to the same patient once corrected, said NGEC co-director David J. Rawlings, MD, of Seattle Childrens Hospital Research Institute.

This repair approach potentially bypasses the complications, treatments and costs associated with rejection experienced by patients receiving replacement stem cells from a different individual.

This complex project provides major new hope for many inherited diseases weve previously had few answers for, said Bruder Stapleton, MD, chief academic officer at Childrens and chair, Department of Pediatrics at the UWSOM. We have five years of very exciting, collaborative science ahead. Were also pleased to join ranks with other NIH Roadmap grant recipients including major research institutions like Harvard, MIT, Yale, Northwestern and UCLA to address some of the most complex problems in modern medicine.

The NGEC research project features 11 different inter-related components, bringing together staff and resources from Childrens, UWSOM and the Hutchinson Center. Joining Scharenberg and Rawlings will be David Baker, PhD, Nancy Maizels, PhD, and Raymond J. Monnat, MD, from the UWSOM, and Hans-Peter Kiem, MD, and Barry Stoddard, PhD, from the Hutchinson Center.

The Northwest Genome Engineering Consortium builds upon the tradition of Seattles previous bone marrow transplant work and related biotech research in our region, firmly placing Childrens Hospital, UWSOM and the Hutchinson Center at the epicenter of groundbreaking genetic developments that will impact the medicine of tomorrow, said Stapleton.

The NIH Roadmap for Medical Research has awarded these significant grants to only nine interdisciplinary research groups in the United States. Each project integrates aspects of different disciplines to address complex health challenges that have so far resisted traditional research approaches. The funding of these nine consortia represents a fundamental change in how biomedical research is conducted.

These programs are designed to encourage and enable change in academic research culture to make interdisciplinary research easier for scientists who wish to collaborate in unconventional ways, said NIH Director Elias A. Zerhouni, MD.


'/>"/>

Contact: Teri Thomas
206-987-5213
Children's Hospital and Regional Medical Center of Seattle
Source:Eurekalert

Related biology news :

1. New strategies to reduce hospital-aquired infections
2. Hospitalizations because of chicken pox down dramatically since implementation of vaccine
3. Bacteria can survive for weeks on hospital surfaces
4. One in 14 men having a heart attack drive themselves to hospital
5. Minorities, uninsured less likely to receive care at high-volume hospitals
6. Hospital-acquired infections -- Inevitable?
7. Funding to tackle hospital superbugs
8. Controlling antibiotics and antibiotic resistance in hospitals
9. Temple University Hospital investigates treatment for cervical dysplasia
10. Study identifies risk factors for spread of respiratory infections in hospitals
11. Restricting hospital-based services during SARS outbreak had modest impact
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
(Date:4/15/2016)... , April 15, 2016  A new partnership ... more accurate underwriting decisions in a fraction of ... competitively priced and high-value life insurance policies to ... With Force Diagnostics, rapid testing (A1C, ... data readings (blood pressure, weight, pulse, BMI, and ...
(Date:4/14/2016)... 14, 2016 BioCatch ™, ... today announced the appointment of Eyal Goldwerger ... Goldwerger,s leadership appointment comes at a time ... the deployment of its platform at several of the ... which discerns unique cognitive and physiological factors, is a ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... In a new case report ... detail how a patient who developed lymphedema after being treated for breast cancer benefitted ... change the paradigm for dealing with this debilitating, frequent side effect of cancer treatment. ...
(Date:6/23/2016)... , June 23, 2016 ... Hematology Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 ... , the peer-reviewed journal from touchONCOLOGY, Andrew ... escalating cost of cancer care is placing an ... result of expensive biologic therapies. With the patents ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... quality, regulatory and technical consulting, provides a free webinar on Performing ... July 13, 2016 at 12pm CT at no charge. , Incomplete investigations are ...
(Date:6/23/2016)... ReportsnReports.com adds 2016 global ... pharmaceuticals section with historic and forecast data along ... Complete report on the Cell Culture ... companies and supported with 261 tables and figures ... The Global Cell Culture Media Industry ...
Breaking Biology Technology: