Navigation Links
Seattle Children's Hospital leads $23.7 million NIH grant to study gene repair

SEATTLE: Sept. 6, 2007 Seattle Childrens Hospital will receive the largest research grant in its 100-year history for a new five-year, eleven-part grant awarded by the National Institutes of Health (NIH) to study gene repair. The $23.7 million grant will support the Northwest Genome Engineering Consortium, led by Andrew M. Scharenberg, MD, of Seattle Childrens Hospital Research Institute in partnership with the University of Washington School of Medicine (UWSOM) and Fred Hutchinson Cancer Research Center. Approximately $13.2 million will be directly awarded to Childrens, with $5.3 million going to UWSOM and $5.2 million to the Hutchinson Center.

The project is funded by the NIH Roadmap for Medical Research, a new type of NIH grant program designed to address especially complex problems in research that require expertise across multiple scientific disciplines. This large award comes fresh on the heels of Childrens Hospital being ranked ninth in the nation among the countrys top pediatric hospitals, at a time when Childrens is significantly expanding its research agenda, facilities and staff. During the past year Childrens has acquired nearly four acres and 1.5 million developable-square feet of research property in downtown Seattles prime biotech corridor.

The Northwest Genome Engineering Consortium (NGEC) is collaborative research composed of 11 different projects that will build upon each other to develop methods for gene repair, an innovative approach to gene therapy. Gene repair involves manipulating defective sequences of DNA in a targeted gene to change them to the correct sequence, restoring the gene to normal function and eliminating the cause of the patients inherited disease. Gene repair requires multiple scientific disciplines to generate new kinds of proteins that can perform the required manipulations and then deliver them to a patients diseased tissues.

With this research we hope to develop new and efficient approaches for gene repair in certain types of stem cells and other tissues, and use these methods to improve treatments for genetic diseases affecting these tissues, said Scharenberg.

While gene repair ultimately may be useful against a wide range of diseases, Scharenberg believes single-gene inherited disorders of the lymph and bone-marrow systems such as immune deficiencies, Sickle Cell Disease and thalassemias are the best place to start.

Collectively, these disorders are a major global disease burden in children. The target cells in these diseases that will be manipulated by the gene-repair process are blood stem cells, and they are readily accessible. By working with these disorders, the NGEC will build upon Seattles strong regional expertise and reputation in this type of stem-cell transplantation.

We hope it will be possible to remove a patients existing blood stem cells, repair defective genes in these cells, and then return them back to the same patient once corrected, said NGEC co-director David J. Rawlings, MD, of Seattle Childrens Hospital Research Institute.

This repair approach potentially bypasses the complications, treatments and costs associated with rejection experienced by patients receiving replacement stem cells from a different individual.

This complex project provides major new hope for many inherited diseases weve previously had few answers for, said Bruder Stapleton, MD, chief academic officer at Childrens and chair, Department of Pediatrics at the UWSOM. We have five years of very exciting, collaborative science ahead. Were also pleased to join ranks with other NIH Roadmap grant recipients including major research institutions like Harvard, MIT, Yale, Northwestern and UCLA to address some of the most complex problems in modern medicine.

The NGEC research project features 11 different inter-related components, bringing together staff and resources from Childrens, UWSOM and the Hutchinson Center. Joining Scharenberg and Rawlings will be David Baker, PhD, Nancy Maizels, PhD, and Raymond J. Monnat, MD, from the UWSOM, and Hans-Peter Kiem, MD, and Barry Stoddard, PhD, from the Hutchinson Center.

The Northwest Genome Engineering Consortium builds upon the tradition of Seattles previous bone marrow transplant work and related biotech research in our region, firmly placing Childrens Hospital, UWSOM and the Hutchinson Center at the epicenter of groundbreaking genetic developments that will impact the medicine of tomorrow, said Stapleton.

The NIH Roadmap for Medical Research has awarded these significant grants to only nine interdisciplinary research groups in the United States. Each project integrates aspects of different disciplines to address complex health challenges that have so far resisted traditional research approaches. The funding of these nine consortia represents a fundamental change in how biomedical research is conducted.

These programs are designed to encourage and enable change in academic research culture to make interdisciplinary research easier for scientists who wish to collaborate in unconventional ways, said NIH Director Elias A. Zerhouni, MD.


Contact: Teri Thomas
Children's Hospital and Regional Medical Center of Seattle

Related biology news :

1. New strategies to reduce hospital-aquired infections
2. Hospitalizations because of chicken pox down dramatically since implementation of vaccine
3. Bacteria can survive for weeks on hospital surfaces
4. One in 14 men having a heart attack drive themselves to hospital
5. Minorities, uninsured less likely to receive care at high-volume hospitals
6. Hospital-acquired infections -- Inevitable?
7. Funding to tackle hospital superbugs
8. Controlling antibiotics and antibiotic resistance in hospitals
9. Temple University Hospital investigates treatment for cervical dysplasia
10. Study identifies risk factors for spread of respiratory infections in hospitals
11. Restricting hospital-based services during SARS outbreak had modest impact
Post Your Comments:
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted to ... of 2015 The gross margin was 49% (27) ... operating margin was 40% (-13) Earnings per share rose ... was SEK 249.9 M (21.2) , Outlook   ... The operating margin for 2016 is estimated to exceed ...
(Date:4/15/2016)... CHICAGO , April 15, 2016  A ... companies make more accurate underwriting decisions in a ... offering timely, competitively priced and high-value life insurance ... health screenings. With Force Diagnostics, rapid ... and lifestyle data readings (blood pressure, weight, pulse, ...
(Date:3/31/2016)... , March 31, 2016 ... ) ("LegacyXChange" or the "Company") LegacyXChange is ... users of its soon to be launched online site ... ) will also provide potential shareholders ... of DNA technology to an industry that is notorious ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016 Apellis ... Phase 1 clinical trials of its complement C3 ... single and multiple ascending dose studies designed to ... (PD) of subcutaneous injection in healthy adult volunteers. ... (SC) either as a single dose (ranging from ...
(Date:6/23/2016)... -- On Wednesday, June 22, 2016, the NASDAQ ... Dow Jones Industrial Average edged 0.27% lower to finish at ... has initiated coverage on the following equities: Infinity Pharmaceuticals ... NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ARLZ ... Learn more about these stocks by accessing their free trade ...
(Date:6/23/2016)... ... June 23, 2016 , ... Velocity Products, a division of ... and optimized exclusively for Okuma CNC machining centers at The International Manufacturing Technology ... among several companies with expertise in toolholding, cutting tools, machining dynamics and distribution, ...
(Date:6/22/2016)... SAN DIEGO , June 22, 2016 /PRNewswire/ ... partnership that will allow them to produce up ... (HiPSC) from one lot within one week. These ... their time laboriously preparing cells and spend more ... made possible through a proprietary, high-volume manufacturing process ...
Breaking Biology Technology: