Navigation Links
Search for the 'on' switches may reveal genetic role in development and disease
Date:1/24/2008

DURHAM, N.C. -- A new resource that identifies regions of the human genome that regulate gene expression may help scientists learn about and develop treatments for a number of human diseases, according to researchers at Dukes Institute for Genome Sciences & Policy (IGSP).

The majority of DNA in our bodies is packaged, or tightly structured, said Gregory Crawford, Ph.D., a researcher in the IGSP and one of the senior investigators on this study. Our goal was to identify the areas of DNA across the entire genome that are not packaged, because we know those are the regions that are important in regulating gene activity.

The researchers published their findings in the January 25, 2008 issue of the journal Cell. The study was funded by the Duke IGSP and the National Human Genome Research Institute.

They combined two known processes to look at regulatory regions across the whole human genome, Crawford said.

We used an enzyme called DNase that has been known for decades to preferentially identify unpackaged regions of DNA, he said. In this study, we identified all unpackaged regions within the entire genome using two extremely efficient methodologies: microarrays and sequencing.

Microarrays are glass slides on which scientists can simultaneously look at millions of short pieces of DNA. New sequencing technologies are able to determine the genetic code of millions of DNA fragments. Together, these tools generated guides to understanding the location of the unpackaged regions, and the researchers compared the results found using each method and found high levels of agreement.

By combining the two methods, the researchers were able to scan the entire genome efficiently.

Scientists have used similar methods to look at tiny portions of the genome in the past, but ours is the first technology to really allow researchers to look at the whole genome, so we can see all of the areas where gene regulation occurs, said Terrence Furey, Ph.D., a researcher in the IGSP and co-senior investigator on this study. Identifying these sites may help us understand the biological basis for gene regulation expression patterns in different cell types. We'll also compare patterns within and across species, in response to external stimuli and in diseased tissues.

The researchers said they looked at normal cells for this study because in order to understand anything about disease or the aging processes, it's important to first understand what a normal cell looks like.

Perhaps in the future, this data resource could help researchers learn to turn a harmful gene off or increase the expression of helpful ones, Furey said.


'/>"/>

Contact: Lauren Shaftel Williams
lauren.shaftel@duke.edu
919-684-4966
Duke University Medical Center
Source:Eurekalert

Related biology news :

1. Computer-based tool aids research, helps thwart questionable publication practices
2. QUT researcher discovers Maya mask splendor
3. Hot springs microbes hold key to dating sedimentary rocks, researchers say
4. Skin care: new research into scar-free healing
5. Stem-cell transplantation improves muscles in MD animal model, UT Southwestern researchers report
6. Tiny genetic differences have huge consequences: McGill researchers
7. Case researcher in RNA biology makes waves by challenging current thinking
8. MNI researchers locate neurological basis of depression following sports concussion
9. DOE JGI releases soybean genome assembly to enable worldwide bioenergy research efforts
10. Stem cell research aims to tackle Parkinsons disease
11. Research pioneer in the developmental origins of psychiatric illness is awarded the Sackler prize
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/7/2017)... New York , February 7, 2017 ... as ID Global Solutions Corporation [OTC: IDGS], ("Ipsidy" or ... management and electronic transaction processing services, is pleased to ... of the Company. Effective January 31, 2017, ... the Board of Directors, CEO and President.  An experienced ...
(Date:2/3/2017)... A new independent identity strategy consultancy firm announces its ... to fill a critical niche in technical and policy ... Mark Crego and Janice Kephart together ... that span federal governments, the 9/11 Commission, private industry, ... has a common theme born from a shared passion ...
(Date:2/2/2017)... , Feb. 1, 2017  Central to ... and meaningful advances worldwide, The Japan Prize Foundation ... Prize, who have pushed the envelope in their ... and Communication. Three scientists are being recognized with ... achievements that not only contribute to the advancement ...
Breaking Biology News(10 mins):
(Date:2/17/2017)... MILPITAS, Calif. , Feb. 17, 2017 /PRNewswire/ ... posters detailing data on its oral peptide drug ... Congress of the European Crohn,s and Colitis ... in Barcelona, Spain from ... The posters detail preclinical data on Protagonist drug ...
(Date:2/16/2017)... -- ImMAGE Biotherapeutics (OTCMKTS: IMMG), an early-stage biotechnology company harnessing the ... for triple negative breast cancer (TNBC), announced today their completion ... program. The YEi Start in France ... grow their business in France and ... to complete an intensive one week immersion in ...
(Date:2/16/2017)... 2017  ArmaGen, Inc., a privately held biotechnology ... severe neurological disorders, today reported preliminary evidence of ... company,s investigational therapy for the treatment of Hurler ... I, or MPS I). The initial results from ... today at the 13 th annual WORLD ...
(Date:2/16/2017)... HOLLISTON, Mass. , Feb. 16, 2017   ... or the "Company"), a biotechnology company developing bioengineered organ ... the esophagus, bronchus and trachea, announced today the closing ... offering of 20,000,000 shares of common stock and warrants ... gross proceeds of $8.0 million. The offering was priced ...
Breaking Biology Technology: