Navigation Links
Scripps research team develops technique to determine ethnic origin of stem cell lines
Date:12/29/2009

An international team of scientists led by researchers at The Scripps Research Institute has developed a straightforward technique to determine the ethnic origin of stem cells.

The Scripps Research scientists initiated the studypublished in the January 2010 edition of the prestigious journal Nature Methodsbecause the availability of genetically diverse cell lines for cell replacement therapy and drug development could have important medical consequences. Research has shown that discordance between the ethnic origin of organ donors and recipients can influence medical outcomes for tissue transplantation, and that the safety and effectiveness of specific drugs can vary widely depending on ethnic background.

The team's analysis of a variety of human embryonic stem cell lines currently in use in research laboratories around the world found that these cells originated largely from Caucasian and East Asian populations, with little representation from populations originating in Africa. In response to these results, the scientists used skin cells from an individual of West African Yoruba heritage to create a new stem cell line, the first to carry the genetic profile of this ethnic group.

"Ethnic origin is a critical piece of information that should come with every cell line," said Scripps Research Professor Jeanne Loring, Ph.D., who is senior author of the paper. "Everyone who works with stem cells should be doing this kind of analysis."

"Knowing that a big push in the future is using these lines in the clinic and in drug development, there's a need to have an ethnically diverse population of cells," added Louise Laurent, M.D., Ph.D., assistant professor at the University of California, San Diego (UCSD) and research associate at Scripps Research, who is first author of the paper with Caroline Nievergelt, Ph.D., also an assistant professor at UCSD.

Greater diversity in cell samples would set the stage for more broadly relevant research by labs in academia and industry, more robust results on the safety and efficacy of potential therapies, and more successful tissue transplants.

The Promise of Stem Cells

Normally, cells develop from stem cells into a myriad of increasingly more specialized cell types during early development and throughout a lifetime. In humans and other mammals, these developmental events are usually irreversible. This means that when tissues are damaged or cells are lost, the body has limited means by which to replenish them.

Having a source of stem cells would be useful in many medical situations because these cells are "pluripotent," having the ability to become any of the body's cell types. Pluripotent stem cells would potentially provide physicians with the ability to replace or repair damaged tissues throughout the body. For example, pluripotent stem cells could be differentiated into the damaged cell type and transplanted.

Much research on pluripotent stem cells to date has been conducted on human embryonic stem cells, which are harvested from discarded embryos (those created but not used for the purposes of in vitro fertilization, a technique to help couples conceive). However, recently another source of pluripotent stem cells has come onto the scene. These cellscalled induced pluripotent stem cellsare created by taking a sample of skin cells or another type of differentiated cell and using chemicals and molecular biology techniques to coax them back into a pluripotent state.

The current analysis included 47 human embryonic stem cell lines collected from labs located around the worldincluding Korea, Australia, and Finland. The analysis also included five induced pluripotent stem cell lines.

Ancestors Forgotten and Remembered

To determine the ethnic origins of the stem cell lines and to link them to genetic "signatures" that might affect medical outcomes, the scientists drew on previous research from the International HapMap Project, published in the journal Nature in 2003. This research linked single-letter alterations in the genetic codeknown as single nucleotide polymorphisms, or SNPswith people of known ethnic origins. This data provided a way to identify the ethnic heritage of a donor of any cell.

Laurent noted that simply asking cell donors about their ethnic heritage does not provide accurate data. "There's often an ancestor from a different area who a person doesn't know about," she said.

The technology used for the new study, known as SNP genotyping, uses microarrays, which are easily available, inexpensive, and relatively straight forward for scientists to use.

When the Scripps Research scientists applied the technique to the embryonic stem cell lines, they found that Caucasians were especially well represented among the samples, followed by East Asians. Cells of some mixed heritage were also common. Notably lacking from the samples were cell lines representing African heritage.

In addition, the authors found that the country in which a cell line was generated did not necessarily predict the ethnicity of the donor.

In creating a new pluripotent stem cell line from an individual with a West African Yoruba background, the scientists generated a line that contains distinct genetic markers for disease risk and drug metabolism.

"There's not a lot of value in making a new pluripotent stem cell line now unless it has something new to offer," said Loring. "I think that increasing ethnicity and genetic diversity is an important reason for generating new lines."

The data generated by the studywhich Loring describes as the foundation of a new database of human pluripotent stem cell genetic informationwill be available for other researchers to access for studies on specific genes, stem cell transplantation, and other topics.


'/>"/>

Contact: Keith McKeown
kmckeown@scripps.edu
858-784-8134
Scripps Research Institute
Source:Eurekalert

Related biology news :

1. Scripps Research scientists crack mystery of proteins dual function
2. Scripps Research team uncovers chemical basis for extra quality control in protein production
3. Scripps research scientists find new link between insulin and core body temperature
4. Scripps-led study shows ocean health plays vital role in coral reef recovery
5. Scripps Research scientists observe human neurodegenerative disorder in fruit flies
6. Scripps studies offer new picture of Lake Tahoes earthquake potential
7. Scripps scientists help decode mysterious green glow of the sea
8. Scripps scientists find structure of a protein that makes cancer cells resistant to chemotherapy
9. Scripps research scientists watch as individual alpha-synuclein proteins change shape
10. Scripps research team identifies key molecules that inhibit viral production
11. Historical photographs expose decline in Floridas reef fish, new Scripps study finds
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/22/2016)... DUBLIN , January 22, 2016 ... has announced the addition of the  ... to their offering. --> ... of the  "Global Behavioral Biometric Market ... --> Research and Markets ( http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ...
(Date:1/20/2016)... Jan. 20, 2016 A market that just ... benefit from the explosion in genomics knowledge. Learn all ... Research. A range of dynamic trends are pushing market ... personalized medicine - pharmacogenomics - pathogen evolution - next ... markets - greater understanding of the role of genetic ...
(Date:1/18/2016)... , Jan. 18, 2016  Extenua Inc., ... that simplifies the use and access of ubiquitous ... go-to-market partnership with American Cyber.  ... extensive experience leading transformational C4ISR and Cyber initiatives ... integrating the latest proven technology solutions," said ...
Breaking Biology News(10 mins):
(Date:2/12/2016)... ... February 12, 2016 , ... The Pittcon 2016 Exposition, which ... will include 848 exhibitors (count as of February 9) of which 119 are ... used by the scientific community in industrial, academic, and government labs. The Exposition ...
(Date:2/12/2016)... FRANCISCO , February 12, 2016 ... Medicine Efforts by Enabling Scientific Understanding of Complex ... and Rare Diseases --> ... genomic diagnostics in South Asia and a leading provider ... would contribute $10 million to the GenomeAsia 100K ...
(Date:2/11/2016)... 2016  Vermillion, Inc. (NASDAQ: VRML ), a ... the formation of the Steering Committee for its Pelvic ... --> Pelvic masses can present physicians and healthcare ... pregnancy is ruled out, pelvic masses may include cancers ... benign ovarian tumors and gastrointestinal and urinary tract masses. ...
(Date:2/11/2016)... Feb. 11, 2016  Spectra BioPharma Selling Solutions (Spectra) ... provides biopharma companies the experience, expertise, operational delivery ... outsourced sales teams. Created in concert with industry ... the strategic and tactical needs of its clients ... through both personal and non-personal promotion. ...
Breaking Biology Technology: