Navigation Links
Scripps research scientists shed light on potential treatment for Gaucher's disease

LA JOLLA, CA May 7, 2010 In findings that advance scientists' understanding of a whole class of inherited disorders, a team from The Scripps Research Institute has shed light on a mechanism that enables a potential treatment for Gaucher's disease and other lysosomal storage diseases.

The findings were published in an advance, online edition of the journal Nature Chemical Biology on May 9, 2010.

"This study is likely to motivate clinical trials for the treatment of neuropathic lysosomal storage diseases, including Gaucher's disease, where the current standard of care, enzyme replacement therapy, is ineffective," said team leader Jeffery Kelly, who is chair of the Scripps Research Department of Molecular and Experimental Medicine, Lita Annenberg Hazen Professor of Chemistry, and a member of the Skaggs Institute of Chemical Biology. "The research is especially promising because we enhanced the cellular folding and function of mutated lysosomal enzymes, whose deficient function is linked to lysosomal storage diseases, using two distinct categories of FDA-approved drugs that have been shown to be safe and effective for the treatment of high blood pressure and muscle spasms."

"We wanted to uncover general principles that could be applied to a variety of loss-of-function protein misfolding diseases," added Derrick Sek Tong Ong, a graduate student in the Scripps Research Kellogg School of Science and Technology who was first author of the paper. "This study reveals how we can enhance the capacity of the cellular machinery to fold and traffic a mutant enzyme, so that the protein can function better."

In the new paper, the team revealed how the widely available prescription drugs diltiazem, verapamil, and in some cases dantrolene, acted on cells from patients with Gaucher's disease, increasing calcium levels in a subcellular compartment called the endoplasmic reticuluma convoluted membranous sac within the cell where the folding of many proteins takes place.

A Genetic Disease

Gaucher's disease is the most common genetic disease among the Ashkenazi Jewish population of Eastern European ancestry. Symptoms include bruising easily due to low blood platelets, enlargement of the liver and spleen, and fatigue due to anemia. The disease also causes cells in the bone marrow to become engorged with a fatty storage material, which may lead to bone lesions, weakening the skeleton, sometimes resulting in painful fractures. In some instances, the disease also impairs the function of the lungs or the central nervous system.

Gaucher's disease (named after the French dermatologist Phillipe Gaucher, who first described the condition in 1882) is caused by mutations in a person's beta-glucosidase genes, and these defects corrupt his or her beta-glucosidase enzyme. Some of these corrupted enzymes cannot fold properly into their correct three-dimensional structure because they are unstable in the neutral pH environment of the endoplasmic reticulum. The corrupted, mutant enzymes are often degraded by a process known as endoplasmic reticulum-associated degradation, and fail to reach their destinationanother subcellular compartment called the lysosome, where they normally break down a fatty substance called glucosylceramides. When the beta-glucosidase concentration and/or enzymatic activity in the lysosome are too low, glucosylceramides accumulate, causing the symptoms of Gaucher's disease.

The current approaches for treating Gaucher's disease (and a few of the 40 or so other lysosomal storage disorders) involve replacing the deficient enzyme with an enzyme that is made using recombinant engineering and then is injected into the patient. Enzyme replacement therapy is an effective way to restore many patients to good health, but it has drawbacks. The enzyme has to be infused intravenously or through a surgically implanted catheterusually in a doctor's officea process that takes several hours and must be repeated every one or two weeks. Enzyme replacement therapy is also expensive, costing between $100,000 and $750,000 per year per patient. And this therapy is not effective at treating neurological complications of lysosomal storage diseases because injected enzymes cannot enter the brain.

However, a series of papers from the Kelly lab has shown that several other treatment approaches hold promise.

The Promise of a New Treatment Approach

In a paper published in PLoS Biology in 2008, the lab found that the prescription drugs diltiazem and verapamil were effective in restoring partial cellular folding, trafficking, and function to mutant enzymes responsible for three lysosomal storage disorders, including Gaucher's disease.

The scientists suspected that the drugs enhanced the interaction between the mutant lysosomal enzyme and the machinery of the cell that folds proteins, the so-called "chaperones" (helper proteins). Enhanced chaperone function, the scientists believed, might enhance the extent of mutant enzyme folding in the endoplasmic reticulum, allowing more of the mutant enzymes to engage the trafficking pathway that transports them to the lysosome. Even though the mutant enzymes are not completely normal, they exhibit sufficient function (greater than 10 percent) to improve the lysosomal storage phenomenon that causes these maladies.

But to make a more persuasive case for expensive clinical trials, the scientists wanted to understand the mechanism(s) by which the drugs were altering the cellular chaperones. The new study helps answer this question.

Using biochemical, pharmacologic, and siRNA techniques, the scientists examined the hypothesis that these drugs increased calcium levels in the endoplasmic reticulum post-translationally enhancing the calcium-regulated chaperones.

"We interrogated the importance of two calcium efflux channels and one pump (SERCA) on endoplasmic reticulum calcium levels," said Ong. "We found that one of the calcium efflux channels was sufficient to increase calcium levelsthe ryanodine receptor."

These drugs appear to enhance the function of a chaperone called calnexin, which is expected to aid the folding of most lysosomal enzymes because of their common biochemistry (post-translational modificationN-linked glycosylation).

While Ong is hopeful that the drugs will be effective for treating Gaucher's disease and other lysosomal storage disorders, he also cautions that many steps still need to be taken before such treatment is approved for use in patients.

"We are always cautious because what works in patient-derived cells does not always work in humans," he said.


Contact: Keith McKeown
Scripps Research Institute

Related biology news :

1. Scripps Research team provides groundbreaking new understanding of stem cells
2. New Scripps Research and GNF study helps explain how we can sense temperatures
3. Scripps Research scientists reveal how genetic mutations may cause type 1 diabetes
4. New nano-tool synthesized at Scripps Research Institute
5. Scripps Research scientists solve mystery of fragile stem cells
6. Scripps research team reveals how an old drug could have a new use for treating river blindness
7. Scripps Research scientists find two compounds that lay the foundation for a new class of AIDS drug
8. Scripps Research scientists create new way to screen libraries of 10 million or more compounds
9. Scripps Research team wins global race to achieve landmark synthesis of perplexing natural product
10. Scripps Florida scientists show lifeless prions capable of evolutionary change and adaptation
11. Scripps research team develops technique to determine ethnic origin of stem cell lines
Post Your Comments:
(Date:11/26/2015)... 2015 Research and Markets ( ) ... Sensors - Technology and Patent Infringement Risk Analysis" ... --> Fingerprint sensors using capacitive technology ... fingerprint sensor vendor Idex forecasts an increase of 360% ... devices and of the fingerprint sensor market between 2014 ...
(Date:11/19/2015)... 19, 2015  Although some 350 companies are actively ... a few companies, according to Kalorama Information. These include Roche ... the market share of the 6.1 billion-dollar molecular testing ... Market for Molecular Diagnostic s .    ... still controlled by one company and only a handful ...
(Date:11/17/2015)... -- Paris from 17 th ... Paris from 17 th until 19 th ... has invented the first combined scanner in the world which ... surface. Until now two different scanners were required: one for ... on the same surface. This innovation is an ideal ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... ... 01, 2015 , ... Park Systems , world leader ... ion conductance microscopy module to Park NX10 that is the only product available ... benefits virtually all materials characterization that require measurements in liquid such as hydrogel, ...
(Date:12/1/2015)... December 1, 2015 Dr. Harry Lander , President of ... as Chief Science Officer and recruits five distinguished ... Lander , President of Regen, expands his role to include ... recruits five distinguished scientists to join advisory team ... expands his role to include serving as ...
(Date:11/30/2015)... (PRWEB) , ... November 30, 2015 , ... Global ... and development stages of a new closed system for isolating adipose-derived stem cells. The ... vascular fraction (SVF) of adipose tissue. SVF is a component of the lipoaspirate obtained ...
(Date:11/30/2015)... Partnership includes an MPP ... the u niversity , s Solid Drug Nanoparticle (SDN) ... - up through cost cuts ... , where licensees based anywhere in the world will have the right to make, ... Africa , where licensees based anywhere in the world will have the right ...
Breaking Biology Technology: