Navigation Links
Scripps research scientists find new link between insulin and core body temperature
Date:11/19/2009

LA JOLLA, CA November 19, 2009 A team led by scientists at The Scripps Research Institute have discovered a direct link between insulina hormone long associated with metabolism and metabolic disorders such as diabetesand core body temperature. While much research has been conducted on insulin since its discovery in the 1920s, this is the first time the hormone has been connected to the fundamental process of temperature regulation.

The paper was published recently in an advance, online issue of the journal Diabetes, a journal of the American Diabetes Association, and will appear in the January print edition of the publication.

The scientists found that when insulin was injected directly into a specific area of the brain in rodents, core body temperature rose, metabolism increased, and brown adipose (fat) tissue was activated to release heat. The research team also found that these effects were dose-dependentup to a point, the more insulin, the more these metabolic measures rose.

"Scientists have known for many years that insulin is involved in glucose regulation in tissues outside the brain," said Scripps Research neurobiologist Manuel Sanchez-Alavez, who was first author of the new paper with Bartfai lab colleagues Iustin V. Tabarean and Olivia Osborn (now at the University of California, San Diego). "The connection to temperature regulation in the brain is new."

In addition to suggesting a fresh perspective on diseases such as diabetes that involve the disruption of insulin pathways, the study adds to our understanding of core body temperaturethe temperature of those parts of the body containing vital organs, namely the trunk and the head. Normally, core body temperature stays within a narrow range so that key enzymatic reactions can occur. When core body temperature goes outside this range for prolonged periodshigher as in fever, or lower as in hypothermiathe result is harm to the body.

More modest variations in core body temperature are associated with our daily 24-hour sleep-wake cycle, the female monthly hormonal cycle, and, intriguingly, the effects of severe calorie restriction.

"Our paper highlights the possibility that differences in core temperature may play a role in obesity and may represent a therapeutic area in future drug design," added Osborn.

A Surprising Find

The laboratory of Tamas Bartfai, who is chair of the Department of Molecular and Integrative Neurosciences, director of the Harold Dorris Neurological Research Institute, and a member of The Skaggs Institute of Chemical Biology at Scripps Research, has been investigating the biology of temperature regulation for almost a decade. The idea for the new study came about from some recent experiments in his lab exploring the properties of cells called "warm-sensitive neurons." These cells exist only in the preoptic area of the brain, which is known to regulate core body temperature.

In work coordinated by Osborn to characterize these neurons and their transcriptome (all of the messenger RNA molecules in a cell, which reflect the genes being expressed), the team noticed something unexpecteda messenger RNA for an insulin receptor.

"We were surprised to find the insulin receptor," said Tabarean. "The insulin receptor is very well documented in the pancreas and in other peripheral tissues. But in the brain, it was not clear and we definitely did not know about its existence in warm-sensitive neurons."

Hypothesizing that insulin was acting in the regulation of core body temperature because of its presence in warm-sensitive neurons, the scientists set out to investigate. To do so, they used a rare combination of techniques including molecular biology at the single-cell level, electrophysiology, imaging techniques, and in vivo metabolic studies.

First, Tabarean led the single-cell work, examining the effect of insulin on individual warm-sensitive neurons, which fire more frequently when temperature rises. Results showed that insulin was potent in reducing the neurons' firing rate.

Next, members of the Bartfai lab designed several whole animal studies to confirm these findings and examine the pathways in the body that might be affected.

Lighting up Beautifully

The scientists suspected that insulin in the brain might work to warm the body through a specific pathway involving signals that traveled from the brain's preoptic area, down the spinal cord, to neurons that direct brown adipose tissue to expend energy to produce heat.

Brown adipose tissue, also known as brown fat, is distinct from white fat in that it burns calories rather than storing them. While in years past, brown fat was thought to exist in humans only when they are infants, recent studies have shown that brown fat deposits are also found in healthy adults, especially around their collarbones and necks. Interestingly, older people have less brown fat than younger people, and obese individuals have less than lean individuals.

To see if brown fat was activated by insulin in the brain, the Bartfai group collaborated with members of Seimens Medical Solutions, who are experts in imaging techniques. Specifically, the scientists examined the effect of insulin injections in the preoptic area of rats on brown adipose tissue using Computerized tomography (CT) scans and positron emission tomography (PET) scans. Rodents possess brown adipose tissue in two large masses on their backs between the shoulder blades.

When the activity of the brown fat was captured visually, the data confirmed the scientists' projections.

"After insulin injection into the preoptic area, the brown adipose tissue lights up very beautifully," said Sanchez-Alavez.

Next, Sanchez-Alavez led studies examining the effects of insulin on metabolism, specifically by measuring the effect of insulin injections in the preoptic area of mice on oxygen consumption and carbon dioxide production. Again, results showed that metabolic rate increased with an increase in insulin.

"All the techniquesPET/CT scan, metabolic studies, telemetric worksupport the hyperthermic effect of insulin in rodent models," Sanchez-Alavez summarized.

The authors note that while their new paper illuminates a key piece of the puzzle of the body's metabolic processes, it also raises many intriguing questions: How does insulin get to the brain's preoptic areadoes it cross the blood-brain barrier or is it produced locally? Are diabetics, who are insensitive to insulin in peripheral tissues, still sensitive to insulin in the brain; if so, could this dichotomy be used in the development of a new therapy? Could scientists find a way to use these new insights to increase energy expenditure for the purpose of weight loss?

"This is a very long project," said Sanchez-Alavez. "I hope we get funding to continue this research."


'/>"/>

Contact: kmckeown@scripps.edu
kmckeown@scripps.edu
858-784-8134
Scripps Research Institute
Source:Eurekalert

Related biology news :

1. Scripps scientists discover fluorescence in key marine creature
2. Scripps research team blocks bacterial communication system to prevent deadly staph infections
3. Scripps scientists develop new tests that identify lethal prion strains quickly and accurately
4. Scripps Research discovery leads to broad potential applications in CovX-Pfizer deal
5. Scripps expedition provides new baseline for coral reef conservation
6. Bright lights: Mystery of glowing antibody solved by Scripps research scientists
7. Fishing throws targeted species off balance, Scripps study shows
8. Scripps Oceanography Research pegs ID of red tide killer
9. Scripps Research Institute awarded patent for remarkable chemical technology
10. Scripps research scientists reveal key structure from ebola virus
11. Scripps study sets high economic value on threatened Mexican mangroves
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/21/2016)... VANCOUVER, British Columbia , June 21, 2016 ... been appointed to the new role of principal ... has been named the director of customer development. ... , NuData,s chief technical officer. The moves reflect ... development teams in response to high customer demand ...
(Date:6/9/2016)... , June 9, 2016  Perkotek an innovation leader in attendance control systems is ... log work hours, for employers to make sure the right employees are actually signing ... http://photos.prnewswire.com/prnh/20160609/377486LOGO ... ... ...
(Date:6/2/2016)... , June 2, 2016 The ... has awarded the 44 million US Dollar project, for ... Embossed Vehicle Plates including Personalization, Enrolment, and IT Infrastructure ... leader in the production and implementation of Identity Management Solutions. ... January, however Decatur was selected for ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 2016   Boston Biomedical , an industry ... to target cancer stemness pathways, announced that its ... Drug Designation from the U.S. Food and Drug ... including gastroesophageal junction (GEJ) cancer. Napabucasin is an ... cancer stemness pathways by targeting STAT3, and is ...
(Date:6/23/2016)... , June 23, 2016 Houston Methodist ... the Cy-Fair Sports Association to serve as their ... agreement, Houston Methodist Willowbrook will provide sponsorship support, ... connectivity with association coaches, volunteers, athletes and families. ... the Cy-Fair Sports Association and to bring Houston ...
(Date:6/23/2016)... NEW YORK , June, 23, 2016  The ... students to envision new ways to harness living systems ... of Modern Art (MoMA) in New York ... more than 130 participating students, showcased projects at MoMA,s ... included Paola Antonelli , MoMA,s senior curator of ...
(Date:6/23/2016)... ... , ... STACS DNA Inc., the sample tracking software company, today announced that ... joined STACS DNA as a Field Application Specialist. , “I am thrilled that ... of STACS DNA. “In further expanding our capacity as a scientific integrator, Hays brings ...
Breaking Biology Technology: