Navigation Links
Scripps Research scientists solve mystery of fragile stem cells

LA JOLLA, CA April 12, 2010 Scientists at The Scripps Research Institute have solved the decade-old mystery of why human embryonic stem cells are so difficult to culture in the laboratory, providing scientists with useful new techniques and moving the field closer to the day when stem cells can be used for therapeutic purposes.

The research is being published in the journal Proceedings of the National Academy of Sciences (PNAS) during the week of April 12, 2010.

"This paper addresses a long-standing mystery," said Scripps Research Associate Professor Sheng Ding, who is senior author of the paper. "Scientists have been puzzled by why human embryonic stem cells die at a critical step in the culture process. In addition to posing a question in fundamental biology, this created a huge technical challenge in the lab."

The new paper, however, provides elegant solutions to both aspects of this problem.

In the study, the team discovered two novel synthetic small molecule drugs that can be added to human stem cell culture that each individually prevent the death of these cells. The team also unravels the mechanisms by which the compounds promote stem cell survival, shedding light on a previously unknown aspect of stem cell biology.

Notorious Fragility

The hope of most researchers in the field is that one day it will be possible to use stem cells which possess the ability to develop into many other distinct cell types, such as nerve, heart, or lung cells to repair damaged tissue from any number of diseases, from Type 1 diabetes to Parkinson's disease, as well as from injuries.

Laboratory work with human embryonic stem cells, however, has been hampered by their notorious fragility. In the process of growing stem cells in culture, scientists must split off cells from their cell colonies. At this point in the process, however, human embryonic stem cells die unless the scientists take extraordinary care that this does not happen.

"The current techniques to keep these cells alive are tedious and labor-intensive," said Ding. "Keeping the cells alive is so difficult that some people are discouraged from entering the field. It is very frustrating experience for everyone."

Mysteriously, mouse embryonic stem cellswhich share much basic biology with human embryonic stem cellsdo not pose the same difficulties in the laboratory. They can usually be split off from a colony and go on to survive and thrive.

To address these issues, the scientists decided to start with a screen of a library of chemical compounds to see if they could find any small molecules that could be added to the human embryonic stem cell culture that would promote the cells' survival.

When the scientists examined their results, they were elated to find two novel compounds (named Thiazovivin and Pyrintegrin) that both worked to dramatically protect the cells, promoting human embryonic stem cell survival by more than 30 fold.

"Basically, this solved this cell survival problem that has been plaguing scientists for more than 10 years," said Ding.

The Importance of Interaction

But the scientists didn't stop there.

Next, using the two new survival-promoting small molecules as clues, the scientists set out to understand the biological mechanism behind the cells' survival or demise. By examining cell growth in the presence and absence of the compounds, the team found that the key factor was a protein on the cell surface called e-cadherin, which mediates interactions among cells and between cells and the extracellular matrix (a structure present between a variety of animal cells that provides support and anchorage for cells and regulates intercellular communication).

"While in the past people have often talked about the proteins in cell nucleus as regulating stem cell function, our study puts the focus on a different area," said Ding. "E-cadherin is a protein on the cell surface that is very important to cell survival and cell growth."

The team found that when human embryonic stem cells are cut out from the colony, this key protein is disrupted and then internalized within the cell. Without e-cadherin on the cell surface, cell signaling between the cells and their environment is disrupted and the cells quickly die.

Both chemical compounds identified by the study, however, protected e-cadherin from damage.

In further experiments, the scientists found that the key difference between human and mouse embryonic stem cells lay not only within the cells themselves, but also in and controlled by their microenvironmentthe surrounding cells, signaling factors, and extracellular matrix. The scientists were able to transfer human embryonic stem cells into a mouse embryonic stem cell microenvironment. There, the scientists found, human cells were more likely to survive, even without the survival-promoting compounds.

Moreover, when the scientists chemically induced human embryonic stem cells back to an earlier stage of developmentwhich had an extracellular environment similar to mouse embryonic stem cells conventionally used in the laboratorythere were also no longer problems growing them in culture.

"This validated our mechanistic investigations from a different angle," said Ding, "showing that we had dissected out a very core regulatory mechanism."

Ding expects that the methods discussed in the new study will soon be widely adopted by stem cell laboratories around the world.

"My lab currently uses the novel small molecules indentified in this study on a routine basis, making our life significantly easier and advancing our efforts," said Ding. "Even more, chemically inducing human embryonic stem cells back to an earlier stage of development has advantages for some areas of investigation."


Contact: Keith McKeown
Scripps Research Institute

Related biology news :

1. Scripps scientists discover fluorescence in key marine creature
2. Scripps research team blocks bacterial communication system to prevent deadly staph infections
3. Scripps scientists develop new tests that identify lethal prion strains quickly and accurately
4. Scripps Research discovery leads to broad potential applications in CovX-Pfizer deal
5. Scripps expedition provides new baseline for coral reef conservation
6. Bright lights: Mystery of glowing antibody solved by Scripps research scientists
7. Fishing throws targeted species off balance, Scripps study shows
8. Scripps Oceanography Research pegs ID of red tide killer
9. Scripps Research Institute awarded patent for remarkable chemical technology
10. Scripps research scientists reveal key structure from ebola virus
11. Scripps study sets high economic value on threatened Mexican mangroves
Post Your Comments:
(Date:11/16/2015)... Calif. , Nov 16, 2015  Synaptics ... of human interface solutions, today announced expansion of ... TouchView ™ touch controller and display driver ... revolution of smartphones. These new TDDI products add ... TD4100 (HD resolution), TD4302 (WQHD resolution), and TD4322 ...
(Date:11/10/2015)... , Nov. 10, 2015  In this ... the basis of product, type, application, disease ... in this report are consumables, services, software. ... are safety biomarkers, efficacy biomarkers, and validation ... report are diagnostics development, drug discovery and ...
(Date:11/2/2015)... , Nov. 2, 2015  SRI International has ... to provide preclinical development services to the National Cancer ... SRI will provide scientific expertise, modern testing and support ... of preclinical pharmacology and toxicology studies to evaluate potential ... --> The PREVENT Cancer Drug Development Program is ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... 30, 2015  AbbVie, is introducing Good Morning ... a daily routine for managing the life-long condition of ... affect the way the body absorbs it so resources ... daily routine are important. The goal of the new ... manage their hypothyroidism by establishing a daily routine, spirit ...
(Date:11/30/2015)... HACKENSACK, N.J. and PETACH TIKVAH, Israel ... Inc. (NASDAQ: BCLI ), a leading developer of ... its wholly-owned subsidiary, Brainstorm Cell Therapeutics Ltd., has been awarded ... Office of the Chief Scientist (OCS). This grant, ... to Brainstorm for 2015 activities to approximately $1.8 million (approximately ...
(Date:11/27/2015)... , November 27, 2015 ... Growing popularity of companion diagnostics is ... cancer biomarkers market with pharmaceutical companies and ... companion diagnostic tests. . ... Complete report on global cancer biomarkers ...
(Date:11/25/2015)... Md. , Nov. 25, 2015  PharmAthene, Inc. ... Directors has adopted a stockholder rights plan (Rights Plan) ... net operating loss carryforwards (NOLs) under Section 382 of ... --> PharmAthene,s use of its NOLs ... "ownership change" as defined in Section 382 of the ...
Breaking Biology Technology: