Navigation Links
Scripps Research scientists solve mystery of fragile stem cells

LA JOLLA, CA April 12, 2010 Scientists at The Scripps Research Institute have solved the decade-old mystery of why human embryonic stem cells are so difficult to culture in the laboratory, providing scientists with useful new techniques and moving the field closer to the day when stem cells can be used for therapeutic purposes.

The research is being published in the journal Proceedings of the National Academy of Sciences (PNAS) during the week of April 12, 2010.

"This paper addresses a long-standing mystery," said Scripps Research Associate Professor Sheng Ding, who is senior author of the paper. "Scientists have been puzzled by why human embryonic stem cells die at a critical step in the culture process. In addition to posing a question in fundamental biology, this created a huge technical challenge in the lab."

The new paper, however, provides elegant solutions to both aspects of this problem.

In the study, the team discovered two novel synthetic small molecule drugs that can be added to human stem cell culture that each individually prevent the death of these cells. The team also unravels the mechanisms by which the compounds promote stem cell survival, shedding light on a previously unknown aspect of stem cell biology.

Notorious Fragility

The hope of most researchers in the field is that one day it will be possible to use stem cells which possess the ability to develop into many other distinct cell types, such as nerve, heart, or lung cells to repair damaged tissue from any number of diseases, from Type 1 diabetes to Parkinson's disease, as well as from injuries.

Laboratory work with human embryonic stem cells, however, has been hampered by their notorious fragility. In the process of growing stem cells in culture, scientists must split off cells from their cell colonies. At this point in the process, however, human embryonic stem cells die unless the scientists take extraordinary care that this does not happen.

"The current techniques to keep these cells alive are tedious and labor-intensive," said Ding. "Keeping the cells alive is so difficult that some people are discouraged from entering the field. It is very frustrating experience for everyone."

Mysteriously, mouse embryonic stem cellswhich share much basic biology with human embryonic stem cellsdo not pose the same difficulties in the laboratory. They can usually be split off from a colony and go on to survive and thrive.

To address these issues, the scientists decided to start with a screen of a library of chemical compounds to see if they could find any small molecules that could be added to the human embryonic stem cell culture that would promote the cells' survival.

When the scientists examined their results, they were elated to find two novel compounds (named Thiazovivin and Pyrintegrin) that both worked to dramatically protect the cells, promoting human embryonic stem cell survival by more than 30 fold.

"Basically, this solved this cell survival problem that has been plaguing scientists for more than 10 years," said Ding.

The Importance of Interaction

But the scientists didn't stop there.

Next, using the two new survival-promoting small molecules as clues, the scientists set out to understand the biological mechanism behind the cells' survival or demise. By examining cell growth in the presence and absence of the compounds, the team found that the key factor was a protein on the cell surface called e-cadherin, which mediates interactions among cells and between cells and the extracellular matrix (a structure present between a variety of animal cells that provides support and anchorage for cells and regulates intercellular communication).

"While in the past people have often talked about the proteins in cell nucleus as regulating stem cell function, our study puts the focus on a different area," said Ding. "E-cadherin is a protein on the cell surface that is very important to cell survival and cell growth."

The team found that when human embryonic stem cells are cut out from the colony, this key protein is disrupted and then internalized within the cell. Without e-cadherin on the cell surface, cell signaling between the cells and their environment is disrupted and the cells quickly die.

Both chemical compounds identified by the study, however, protected e-cadherin from damage.

In further experiments, the scientists found that the key difference between human and mouse embryonic stem cells lay not only within the cells themselves, but also in and controlled by their microenvironmentthe surrounding cells, signaling factors, and extracellular matrix. The scientists were able to transfer human embryonic stem cells into a mouse embryonic stem cell microenvironment. There, the scientists found, human cells were more likely to survive, even without the survival-promoting compounds.

Moreover, when the scientists chemically induced human embryonic stem cells back to an earlier stage of developmentwhich had an extracellular environment similar to mouse embryonic stem cells conventionally used in the laboratorythere were also no longer problems growing them in culture.

"This validated our mechanistic investigations from a different angle," said Ding, "showing that we had dissected out a very core regulatory mechanism."

Ding expects that the methods discussed in the new study will soon be widely adopted by stem cell laboratories around the world.

"My lab currently uses the novel small molecules indentified in this study on a routine basis, making our life significantly easier and advancing our efforts," said Ding. "Even more, chemically inducing human embryonic stem cells back to an earlier stage of development has advantages for some areas of investigation."


Contact: Keith McKeown
Scripps Research Institute

Related biology news :

1. Scripps scientists discover fluorescence in key marine creature
2. Scripps research team blocks bacterial communication system to prevent deadly staph infections
3. Scripps scientists develop new tests that identify lethal prion strains quickly and accurately
4. Scripps Research discovery leads to broad potential applications in CovX-Pfizer deal
5. Scripps expedition provides new baseline for coral reef conservation
6. Bright lights: Mystery of glowing antibody solved by Scripps research scientists
7. Fishing throws targeted species off balance, Scripps study shows
8. Scripps Oceanography Research pegs ID of red tide killer
9. Scripps Research Institute awarded patent for remarkable chemical technology
10. Scripps research scientists reveal key structure from ebola virus
11. Scripps study sets high economic value on threatened Mexican mangroves
Post Your Comments:
(Date:6/22/2016)... ANGELES , June 22, 2016 /PRNewswire/ ... identity management and verification solutions, has partnered ... edge software solutions for Visitor Management, Self-Service ... provides products that add functional enhancements ... partnership provides corporations and venues with an ...
(Date:6/15/2016)... New York , June 15, 2016 /PRNewswire/ ... a new market report titled "Gesture Recognition Market by ... and Forecast, 2016 - 2024". According to the report, ... USD 11.60 billion in 2015 and is estimated ... reach USD 48.56 billion by 2024.  ...
(Date:6/2/2016)... 2, 2016 The Department of Transport ... the 44 million US Dollar project, for the , ... including Personalization, Enrolment, and IT Infrastructure , to ... production and implementation of Identity Management Solutions. Numerous renowned international ... Decatur was selected for the most compliant ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... ... on what they believe could be a new and helpful biomarker for malignant ... Click here to read it now. , Biomarkers are components in ...
(Date:6/27/2016)... 2016  Liquid Biotech USA ... a Sponsored Research Agreement with The University of ... from cancer patients.  The funding will be used ... with clinical outcomes in cancer patients undergoing a ... be employed to support the design of a ...
(Date:6/24/2016)... ... 2016 , ... While the majority of commercial spectrophotometers and fluorometers use the ... models are higher end machines that use the more unconventional z-dimension of 20mm. ... the bottom of the cuvette holder. , FireflySci has developed several Agilent flow ...
(Date:6/23/2016)... June 23, 2016   Boston Biomedical , ... compounds designed to target cancer stemness pathways, announced ... granted Orphan Drug Designation from the U.S. Food ... gastric cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin ... to inhibit cancer stemness pathways by targeting STAT3, ...
Breaking Biology Technology: