Navigation Links
Scripps Research scientist wins $1.9 million grant to study malaria

A scientist from The Scripps Research Institute has won a four-year, $1.9 million grant from the National Institutes of Health to better understand the parasite that causes malaria, laying the groundwork to develop better drugs to combat the widespread and deadly disease.

"Many antimalarial drugs alleviate symptoms, but do not necessarily result in a complete cure because some malaria parasites are able to persist asymptomatically in the liver for months or years," said Scripps Research Professor Elizabeth Winzeler, who is principal investigator for the new grant. "We hope to find new targets that are critical to the liver stages as well as the blood stages with the long-term aim of designing better drugs."

A Complicated Lifecycle

Malaria is a nasty and often fatal disease, affecting about 250 million people every year in Africa, Asia, and the Americas, according to the World Health Organization (WHO). Each year, more than 1 million people die of malaria, mostly children under the age of five. While significant strides had been made in curtailing the disease, for the last two decades malaria, has again been on the rise due to the emergence of drug-resistant parasites.

The parasite Plasmodium, which causes malaria, has a complicated lifecycle in two hostsmosquitoes and humans (or other vertebrate). When a malaria-infected mosquito feeds on a person, the parasite enters the human body. Within 30 minutes, the parasite has infected liver cells, where it remains anywhere from eight days to several months without causing noticeable symptoms.

When this period is over, however, the parasite (now in a different form) leaves the liver and enters red blood cells, where it grows and multiplies. When the infected red blood cells eventually burst, the parasite and Plasmodium toxins are released into the bloodstream, and the person feels sick. Symptoms include fever, chills, headache, and other flulike symptoms; in severe cases, patients can experience convulsions, coma, and liver and kidney failure, which can be fatal.

If a mosquito bites the infected person at this point, the parasite will enter the mosquito, where it will continue the cycle by maturing into a form that can infect the next human host.

Untapped Opportunities

Because most antimalarial drugs have targeted the malaria parasite in its blood stages, Winzeler believes there are untapped opportunities to combat the disease in the liver stages of the parasite's lifecycle. That's where the new grant comes in.

The new grant from the NIH National Institute of Allergy and Infectious Diseases will fund research in the Winzeler lab investigating pathways essential to parasite development in both blood and liver stages. Specifically, the lab will look at the development of parasite's resistance to antimalarial compounds in culture. The team will then endeavor to identify and characterize the genetic mutations enabling the drug resistance, providing new information on potential drug targets.

"The work may lead to a better understanding of how to treat tissue-stage malaria, provide new antibiotic resistance genes, and provide information about how eukaryotic pathogens become resistant to drugs," Winzeler said.


Contact: Mika Ono
Scripps Research Institute

Related biology news :

1. Scripps Research scientists find way to block stress-related cell death
2. Scripps Research scientists find key mechanism in transition to alcohol dependence
3. Scripps Research scientists create new genetic model of premature aging diseases
4. Scripps Research scientists identify mechanism of long-term memory
5. Scripps Research scientists uncover new DNA role in modifying gene function
6. Scripps Research scientists find dual switch regulates fat formation
7. Common chaperone protein found to work in surprising way, say Scripps Research scientists
8. Dr. Daniel Von Hoff presented with top genomics award from Scripps
9. Scripps Research team discovers new details about medically important protein family
10. Scripps Research scientists develop new test for pluripotent stem cells
11. Scripps Research scientists create cell assembly line
Post Your Comments:
(Date:11/12/2015)... 2015   Growing need for low-cost, easy ... been paving the way for use of biochemical ... analytes in clinical, agricultural, environmental, food and defense ... in medical applications, however, their adoption is increasing ... continuous emphasis on improving product quality and growing ...
(Date:11/10/2015)... , Nov. 10, 2015 ... biometrics that helps to identify and verify the ... is considered as the secure and accurate method ... of a particular individual because each individual,s signature ... results especially when dynamic signature of an individual ...
(Date:11/4/2015)... , November 4, 2015 ... market report published by Transparency Market Research "Home Security Solutions ... and Forecast 2015 - 2022", the global home security solutions ... bn by 2022. The market is estimated to expand ... from 2015 to 2022. Rising security needs among customers ...
Breaking Biology News(10 mins):
(Date:11/27/2015)... PUNE, India , November 27, 2015 ... --> Growing popularity of companion ... emerging in cancer biomarkers market with pharmaceutical ... develop in-demand companion diagnostic tests. ... --> Complete report on global ...
(Date:11/25/2015)... -- 2 nouvelles études permettent d , ... entre les souches bactériennes retrouvées dans la plaque ... . Ces recherches  ouvrent une nouvelle voie ... efficace de l,un des problèmes de santé les ...    --> 2 nouvelles études permettent d ...
(Date:11/25/2015)... ... November 25, 2015 , ... A ... Black Aerospace Professionals (OPBAP) has been formalized with the signing of a Memorandum ... met with OPBAP leaders Capt. Karl Minter and Capt. Albert Glenn Tuesday, November ...
(Date:11/24/2015)... ... ... The United States Golf Association (USGA) today announced Dr. Bruce Clarke, of ... since 1961, the USGA Green Section Award recognizes an individual’s distinguished service to the ... of Iselin, N.J., is an extension specialist of turfgrass pathology in the department of ...
Breaking Biology Technology: