Navigation Links
Scientists watch cell-shape process for first time
Date:10/10/2010

Palo Alto, CAResearchers at the Carnegie Institution for Science, with colleagues at the Nara Institute of Science and Technology, observed for the first time a fundamental process of cellular organization in living plant cells: the birth of microtubules by studying recruitment and activity of individual protein complexes that create the cellular protein network known as the microtubule cytoskeletonthe scaffolding that provides structure and ultimately form and shape to the cell. These fundamental results could be important to agricultural research and are published in the October 10, 2010, early on-line edition of Nature Cell Biology.

All plant and animal cells rely on an elaborate array of molecular rods built from the protein tubulin. These rods, called microtubules, organize the cell and generate forces needed to support cell shape, cell movement, and importantly, cell division. To perform these tasks, microtubules need to be organized into specific configurations. Animal cells separate their chromosomes during cell division by organizing the microtubules network from centrioles. A big mystery is how plants, which do not have centrioles organize their microtubule network. Understanding these mechanisms of molecular organization is a primary goal of cell biology.

As co-author David Ehrhardt from Carnegie's Department of Plant Biology explained: "In many cells, microtubule arrays are created with aid of a centralized body called a centrosome. Centrosomal arrays have been a focus of research for decades and much is now understood about how these arrays are created and organized by the centrosome. However, many differentiated animal cells, and flowering plant cells have arrays that are created independently of a centrosome. In fact, flowering plants lack centrosomes all together. Although these centrosome arrays are common in nature, they have received less study and their organization mechanisms remain largely mysterious."

The Ehrhardt lab previously found that individual microtubules in plant cell arrays are born at many locations along the inside of the cell membrane, where they are detached from the sites of birth and move along the membrane to interact with other microtubules. A primary challenge for investigating the molecular basis for these processes has been visualization of the protein complexes that give birth to new microtubule polymers.

The Ehrhardt and Hashimoto groups met this challenge by tagging a component of these complexes, known as nucleating complexes, with multiple copies of a fluorescent protein derived from jellyfish. When introduced into plant cells and visualized with highly sensitive spinning disk confocal microscopy, this tagged protein permitted the researchers to observe what happens as the microtubule array is being built.

Ehrhardt continued: "In centrosomal arrays, these nucleating complexes are recruited to the centrosome, where they give rise to a star-shaped array centered near the nucleus. By contrast, in the cells we studied these complexes were distributed at the cell membrane and were primarily located along the sides of other microtubules, an association that was correlated with their activity. So, microtubules appear to be important for locating and regulating their own formation proteins. In addition, daughter microtubules were created either at a distinct angle to the mother polymer, or in parallel to it. This choice of angle may play a role in either creating new organizational states or maintaining an existing one."

The investigators observed that formation complexes frequently did not remain in place after creating new microtubules, but often left, presumably to go through a new cycle of microtubule creation at a new location. The scientists hypothesized that liberation of the complexes from mother microtubules might be related to the mechanism of daughter microtubule detachment from origination sites.

To explore these questions, the investigators introduced their probe into a mutant lacking the protein katanin (named for a Japanese word for sword), whose job it is to cut microtubules into pieces. The scientists thought that katanin might be responsible for separating new microtubules from their formation complexes. In fact, without the cutting protein, the daughter microtubules completely failed to detach from their birth sites, and tagged formation complexes remained at the base of the daughter microtubule. The only time they saw a formation complex leave in the mutants was when the microtubule completely depolymerizedthat is, the process whereby a large molecule decomposes into individual units. When this occurred, the tagged complex also disappeared. The results indicate that the formation complexes remain associated with mother microtubules until the daughter microtubule is removed either by katanin cutting or by complete depolymerization.

"As far as we are aware, this research is the first to witness the dynamics of individual gamma tubulin complex processes, which are fundamental to every plant and animal," remarked Ehrhardt. "We look at our plant system as a model for non-centrosomal array organization, which also occurs in many important differentiated animal cells. While we anticipate that some of the molecular players may be different, many of the principles may be similar. What we learn here could help us understand basic mechanisms underlying crop plant growth and development, and could have implications for understanding the process of acquiring cell shape and function of human cells."


'/>"/>

Contact: David Ehrhardt
ehrhardt@stanford.edu
650-325-1521
Carnegie Institution
Source:Eurekalert

Related biology news :

1. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
2. Scientists identify novel inhibitor of human microRNA
3. Argonne scientists peer into heart of compound that may detect chemical, biological weapons
4. MU scientists go green with gold, distribute environmentally friendly nanoparticles
5. Scientists identify gene that may contribute to improved rice yield
6. Scientists discover why a mothers high-fat diet contributes to obesity in her children
7. MU scientists see how HIV matures into an infection
8. Earth scientists keep an eye on Texas
9. Thinking it through: Scientists call for policy to guide biofuels industry toward sustainability
10. Scientists identify a molecule that coordinates the movement of cells
11. Scientists Find new migratory patterns for Mediterranean and Western Atlantic bluefin tuna
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/9/2016)... , June 9, 2016 ... Police deploy Teleste,s video security solution to ensure the safety ... France during the major tournament Teleste, ... communications systems and services, announced today that its video security ... to back up public safety across the country. ...
(Date:6/2/2016)... June 2, 2016 Perimeter Surveillance ... Unmanned Systems, Physical Infrastructure, Support & Other Service  ... visiongain offers comprehensive analysis of the global ... will generate revenues of $17.98 billion in 2016. ... Inc, a leader in software and hardware technologies for ...
(Date:5/12/2016)... , May 12, 2016 WearablesResearch.com , ... published the overview results from the Q1 wave of ... recent wave was consumers, receptivity to a program where ... with a health insurance company. "We were ... share," says Michael LaColla , CEO of Troubadour ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , ... June 23, 2016 , ... ... YM (Yeast and Mold) microbial test has received AOAC Research Institute approval 061601. ... microbial tests introduced last year,” stated Bob Salter, Vice President of Regulatory and ...
(Date:6/23/2016)...  The Biodesign Challenge (BDC), a university competition that ... living systems and biotechnology, announced its winning teams at ... New York City . The teams, ... at MoMA,s Celeste Bartos Theater during the daylong summit. ... curator of architecture and design, and Suzanne Lee ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... today announced the launch of the Supplyframe Design Lab . Located in ... to explore the future of how hardware projects are designed, built and brought ...
(Date:6/23/2016)... NC (PRWEB) , ... June 23, 2016 , ... In ... University Hospital in Denmark detail how a patient who developed lymphedema after being treated ... tissue. The results could change the paradigm for dealing with this debilitating, frequent side ...
Breaking Biology Technology: