Navigation Links
Scientists watch as peptides control crystal growth with 'switches, throttles and brakes'
Date:11/23/2009

LIVERMORE, Calif. - By producing some of the highest resolution images of peptides attaching to mineral surfaces, scientists have a deeper understanding how biomolecules manipulate the growth crystals. This research may lead to a new treatment for kidney stones using biomolecules.

The research, which appears in the Nov. 23 online edition of the journal Proceedings of the National Academy of Sciences, explores how peptides interact with mineral surfaces by accelerating, switching and inhibiting their growth.

The team, made up of researchers from Lawrence Livermore National Laboratory, the Molecular Foundry at Lawrence Berkeley, the University of California, Davis and the University of Alabama, for the first time produced single-molecule resolution images of this peptide-mineral interaction.

Inorganic minerals play an important role in most biological organisms. Bone, teeth, protective shells or the intricate cell walls of marine diatoms are some displays of biomineralization, where living organisms form structures using inorganic material. Some minerals also can have negative effects on an organism such as in kidney and gallstones, which lead to severe suffering and internal damage in humans and other mammals.

Understanding how organisms limit the growth of pathological inorganic minerals is important in developing new treatment strategies. But deciphering the complex pathways that organisms use to create strong and versatile structures from relatively simple materials is no easy feat. To better understand the process, scientists attempt to mimic them in the laboratory.

By improving the resolution power of an Atomic Force Microscope (AFM), the PNAS authors were able to image individual atomic layers of the crystal interacting with small protein fragments, or peptides, as they fell on the surface of the crystal.

"Imaging biomolecules that are weakly attached to a surface, while simultaneously achieving single-molecule resolution, is normally difficult to do without knocking the molecules off," said Raymond Friddle, an LLNL postdoctoral fellow. But the team improved upon previous methods and achieved unprecedented resolution of the molecular structure of the crystal surface during the dynamic interaction of each growing layer with peptides. "We were able to watch peptides adhere to the surface, temporarily slow down a layer of the growing crystal, and surprisingly 'hop' to the next level of the crystal surface."

The images also revealed a mechanism that molecules can use to bind to surfaces that would normally repel them. The high resolution images showed that peptides will cluster together on crystal faces that present the same electronic charge. Under certain conditions the peptides would slow down growth, while under other conditions the peptides could speed up growth.

On another face of the crystal, where the peptides were expected to bind strongly, the researchers found instead that the peptides did not attach to the surface unless the crystal growth slowed. The peptides needed to bind in a specific way to the face, which takes more time than a non-specific attachment. As a result, the growing layers of the crystal were able to shed off the peptides as they attempted to bind.

But when the researchers slowed down the crystal growth rate, the peptides collapsed onto the surface so strongly that they completely stopped growth. The researchers proposed that the phenomenon is due to the unique properties of bio-polymers, such as peptides or polyelectrolytes, which fluctuate in solution before resting in a stable configuration on a surface.

"The results of the catastrophic drop in growth by peptides suggest ways that organisms achieve protection against pathological mineralization," said Jim De Yoreo, the project lead and deputy director of research at LBNL's Molecular Foundry. "Once growth is halted, a very high concentration of the mineral will be needed before growth can again reach significant levels."

He said designing polyelectrolyte modifiers in which the charge, size and ability to repel water can be systematically varied would allow researchers to create the equivalent of "switches, throttles and brakes" for directing crystallization.


'/>"/>

Contact: Anne Stark
stark8@llnl.gov
925-422-9799
DOE/Lawrence Livermore National Laboratory
Source:Eurekalert

Related biology news :

1. Reference genome of maize, most important US crop, is published by team co-led by CSHL scientists
2. ORNL, Los Alamos pioneer new approach to assist scientists, farmers
3. Scripps research scientists find new link between insulin and core body temperature
4. Smithsonian scientists find the frog legs trade may facilitate spread of pathogens
5. Scientists unravel evolution of highly toxic box jellyfish
6. Members of Congress, university leaders, scientists launch ScienceWorksForUS
7. Scientists guide immune cells with light and microparticles
8. Scientists put interactive flu tracking at publics fingertips
9. Singapore scientists join international study of 10,000 vertebrates genomes
10. Scientists are first to unlock the mystery of creating cultured pearls from the queen conch
11. UM scientists create fruit fly model to help unravel genetics of human diabetes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... Calif. , April 13, 2017 UBM,s ... York will feature emerging and evolving technology ... Both Innovation Summits will run alongside the expo portion ... speaker sessions, panels and demonstrations focused on trending topics ... largest advanced design and manufacturing event will take place ...
(Date:4/11/2017)... MELBOURNE, Florida , April 11, 2017 ... "Company"), a security technology company, announces the appointment of independent ... John Bendheim to its Board of Directors, furthering the ... ... behalf of NXT-ID, we look forward to their guidance and ...
(Date:4/4/2017)... NEW YORK , April 4, 2017   ... solutions, today announced that the United States Patent and ... The patent broadly covers the linking of an iris ... the same transaction) and represents the company,s 45 th ... our latest patent is very timely given the multi-modal ...
Breaking Biology News(10 mins):
(Date:5/24/2017)... ... May 24, 2017 , ... ... of CLEARAS Water Recovery’s Advanced Biological Nutrient Recovery (ABNR™) technology at its 4,000,000 ... $24 million plant upgrade to sustainably meet current and future nutrient discharge regulations. ...
(Date:5/24/2017)... -- As Ebola resurfaces in the Democratic Republic ... cases now reported, a new analysis of the Ebola gene ... between the 2014 and 2017 outbreaks of the disease.  ... which preceded the 2014 outbreak. An analysis of the latest ... in 2014-15, which again precedes the current outbreak in the ...
(Date:5/23/2017)... ... May 23, 2017 , ... Genedata, a leading ... marking the occasion with a strong presence at Bio-IT World Conference & Expo ... extends an invitation to all attendees to view posters on the entire ...
(Date:5/23/2017)... , ... May 23, 2017 , ... ... advanced technology applications, has announced a facility expansion to accommodate its rapid growth. ... feet of new workspace and renovation of the existing areas. The expansion includes, ...
Breaking Biology Technology: