Navigation Links
Scientists use nanosensors for first time to measure cancer biomarkers in blood
Date:12/13/2009

New Haven, Conn.A team led by Yale University researchers has used nanosensors to measure cancer biomarkers in whole blood for the first time. Their findings, which appear December 13 in the advanced online publication of Nature Nanotechnology, could dramatically simplify the way physicians test for biomarkers of cancer and other diseases.

The teamled by Mark Reed, Yale's Harold Hodgkinson Professor of Engineering & Applied Science, and Tarek Fahmy, an associate professor of biomedical and chemical engineeringused nanowire sensors to detect and measure concentrations of two specific biomarkers: one for prostate cancer and the other for breast cancer.

"Nanosensors have been around for the past decade, but they only worked in controlled, laboratory settings," Reed said. "This is the first time we've been able to use them with whole blood, which is a complicated solution containing proteins and ions and other things that affect detection."

To overcome the challenge of whole blood detection, the researchers developed a novel device that acts as a filter, catching the biomarkersin this case, antigens specific to prostate and breast canceron a chip while washing away the rest of the blood. Creating a buildup of the antigens on the chip allows for detection down to extremely small concentrations, on the order of picograms per milliliter, with 10 percent accuracy. This is the equivalent of being able to detect the concentration of a single grain of salt dissolved in a large swimming pool.

Until now, detection methods have only been able to determine whether or not a certain biomarker is present in the blood at sufficiently high concentrations for the detection equipment to give reliable estimates of its presence. "This new method is much more precise in reading out concentrations, and is much less dependent on the individual operator's interpretation," Fahmy said.

In addition to relying on somewhat subjective interpretations, current tests are also labor intensive. They involve taking a blood sample, sending it to a lab, using a centrifuge to separate the different components, isolating the plasma and putting it through an hours-long chemical analysis. The whole process takes several days. In comparison, the new device is able to read out biomarker concentrations in a just a few minutes.

"Doctors could have these small, portable devices in their offices and get nearly instant readings," Fahmy said. "They could also carry them into the field and test patients on site."

The new device could also be used to test for a wide range of biomarkers at the same time, from ovarian cancer to cardiovascular disease, Reed said. "The advantage of this technology is that it takes the same effort to make a million devices as it does to make just one. We've brought the power of modern microelectronics to cancer detection."


'/>"/>

Contact: Suzanne Taylor Muzzin
suzanne.taylormuzzin@yale.edu
203-432-8555
Yale University
Source:Eurekalert  

Related biology news :

1. Scripps Research scientists crack mystery of proteins dual function
2. Scientists identify natural anti-cancer defenses
3. Princeton scientists find way to catalog all that goes wrong in a cancer cell
4. The pitch of blue whale songs is declining around the world, scientists discover
5. Stand Up to Cancer funds high-risk/high-reward cancer research by 13 young scientists
6. Scientists discover gene module underlying atherosclerosis development
7. Scientists think killer petunias should join the ranks of carnivorous plants
8. Scientists gain new understanding of disease-causing bacteria
9. How can scientists measure evolutionary responses to climate change?
10. Seeing family for the holidays? Scientists discover how the stress might kill you
11. The pill for him: Scientists find a hormonal on-and-off switch for male fertility
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Scientists use nanosensors for first time to measure cancer biomarkers in blood
(Date:11/24/2016)... -- Cercacor today introduced Ember TM Sport Premium ... measure hemoglobin, Oxygen Content, Oxygen Saturation, Perfusion Index, ... approximately 30 seconds. Smaller than a smartphone, using only ... key data about their bodies to help monitor these ... Hemoglobin carries oxygen to muscles. When hemoglobin and ...
(Date:11/22/2016)... 22, 2016   MedNet Solutions , an innovative ... of clinical research, is pleased to announce that the ... and Life Sciences Awards as "Most Outstanding in ... unprecedented year of recognition and growth for MedNet, which ... years. iMedNet ™ , MedNet,s ...
(Date:11/19/2016)... Nov. 18, 2016 Securus Technologies, a leading ... public safety, investigation, corrections and monitoring, announced today that ... ICSolutions, to have an independent technology judge determine who ... modern high tech/sophisticated telephone calling platform, and the best ... they do most of what we do – which ...
Breaking Biology News(10 mins):
(Date:11/30/2016)... ... November 30, 2016 , ... Energetiq ... applications, introduces the 5th generation, ultra-bright, Laser-Driven Light Source, the EQ-77, at the ... (LDLS™) technology, the EQ-77 offers higher radiance and irradiance from a truly broadband ...
(Date:11/30/2016)... Carolina (PRWEB) , ... November 30, 2016 , ... On ... names and symbols for four elements: nihonium (Nh), moscovium (Mc), tennessine (Ts), and ... period of public review, the names earlier proposed by the discoverers have been approved ...
(Date:11/30/2016)... Toronto, ON (PRWEB) , ... November 30, 2016 ... ... focused on discovery and development of precision treatments for neurodegenerative diseases, today announced ... disease (AD) (announced on November 3, 2016) blocked propagation of toxic, prion-like forms ...
(Date:11/30/2016)... -- Teil einer Investition von 5 Millionen ... ... Aptuit LLC hat heute bekannt gegeben, ... neuartige Substanzen haben die Prüfsammlung auf über 400.000 erhöht. ... Entdeckungsfähigkeiten des Unternehmens zu erweitern. Die Ausweitung, die durch ...
Breaking Biology Technology: