Navigation Links
Scientists unravel plants' natural defenses
Date:11/21/2007

A team of researchers, led by the University of Sheffield and Queen Mary, University of London, has discovered how plants protect their leaves from damage by sunlight when they are faced with extreme climates. The new findings, which have been published in Nature, could have implications both for adapting plants to the threat of global warming and for helping man better harness solar energy.

Photosynthesis in plants relies upon the efficient collection of sunlight. This process can work even at low levels of sunlight, when plants are in the shade or under cloud cover for example. However, when the sun is very bright or when it is cold or very dry, the level of light energy absorbed by leaves can be greatly in excess of that which can be used in photosynthesis and can destroy the plant. However, plants employ a remarkable process called photoprotection, in which a change takes place in the leaves so that the excess light energy is converted into heat, which is harmlessly dispersed.

Until now, researchers hadnt known exactly how photoprotection works. By joining forces with their physicist colleagues in France and the Netherlands, the UK team have determined how this process works. They were able to show how a small number of certain key molecules, hidden among the millions of others in the plant leaf, change their shape when the amount of light absorbed is excessive; and they have been able to track the conversion of light energy to heat that occurs in less than a billionth of a second.

Many plant species can successfully inhabit extreme environments where there is little water, strong sunlight, low fertility and extremes of temperature by having highly tuned defence mechanisms, including photoprotection. However, these mechanisms are frequently poorly developed in crop plants since they are adapted for high growth and productivity in an environment manipulated by irrigation, fertilisation, enclosure in greenhouses and artificial shading. These manipulations are not sustainable, they have high energy costs and may not be adaptable to an increasingly unstable climate. Researchers believe that in the future, the production of both food and biofuel from plants needs to rely more on their natural defence mechanisms, including photoprotection.

Professor Horton, of the University of Sheffields Department of Molecular Biology and Biotechnology, who lead the UK team, said: These results are important in developing plants with improved photoprotective mechanisms to enable them to better cope with climate change. This may be hugely significant in our fight against global warming. It is a fantastic example of what can be achieved in science when the skills of biologists and physicists are brought together.

Moreover, there are other global implications of this research. Dr Alexander Ruban of Queen Mary's School of Biological and Chemical Sciences, comments: As we seek to develop new solar energy technology it will be important to not only understand, but to mimic the way biology has learnt to optimise light collection in the face of the continually changing intensity of sunlight.


'/>"/>

Contact: Lindsey Bird
l.bird@sheffield.ac.uk
01-142-225-338
University of Sheffield
Source:Eurekalert

Related biology news :

1. UK scientists working to help cut ID theft
2. Scientists show that mitochondrial DNA variants are linked to risk factors for type 2 diabetes
3. Comet probes reveal evidence of origin of life, scientists claim
4. Scientists link fragile X tremor/ataxia syndrome to binding protein in RNA
5. Male elephants get photo IDs from scientists
6. Scientists retrace evolution with first atomic structure of an ancient protein
7. Muscle mass: Scientists identify novel mode of transcriptional regulation during myogenesis
8. Carnegie Mellon scientists develop nanogels that enable controlled delivery of carbohydrate drugs
9. Clemson scientists shed light on molecules in living cells
10. Scientists tackle mystery mountain illness
11. T. rex quicker than Becks, say scientists
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... , March 30, 2017  On April 6-7, 2017, ... the Genome hackathon at Microsoft,s headquarters in ... competition will focus on developing health and wellness apps ... Hack the Genome is the first hackathon ... The world,s largest companies in the genomics, tech and ...
(Date:3/28/2017)... 28, 2017 The report "Video ... Monitors, Servers, Storage Devices), Software (Video Analytics, VMS), and ... Global Forecast to 2022", published by MarketsandMarkets, the market ... is projected to reach USD 75.64 Billion by 2022, ... The base year considered for the study is 2016 ...
(Date:3/23/2017)... India , March 23, 2017 The report "Gesture ... Touchless Biometric), Industry, and Geography - Global Forecast to 2022", published by MarketsandMarkets, ... at a CAGR of 29.63% between 2017 and 2022. ... ... ...
Breaking Biology News(10 mins):
(Date:6/20/2017)... Parsippany, NJ (PRWEB) , ... June 20, 2017 , ... ... OHAUS makes the transition from being a trusted supplier in the weighing industry, to ... including cell extractions, ELISA essays, enzyme reactions, immunoassays, hybridizations and more, allowing for ...
(Date:6/19/2017)... , ... June 19, 2017 , ... ... all service activities supporting EDETEK’s products including training, implementation, support, and client process ... his new role. He has previously held leadership roles for service providers and ...
(Date:6/19/2017)... ... June 19, 2017 , ... Tunnell Consulting has been solving ... of the biggest challenges faced by life sciences, biotech and pharmaceuticals companies today is ... Kati Abraham , who is well known in the industry and brings significant ...
(Date:6/16/2017)... Lexington, Massachusetts (PRWEB) , ... June 16, 2017 ... ... in medical device compliance and commercialization, has just announced two more sessions of ... of the series will focus on the world of online templates for design ...
Breaking Biology Technology: