Navigation Links
Scientists unlock the secrets of C. difficile's protective shell

The detailed structure of a protective 'jacket' that surrounds cells of the Clostridium difficile superbug, and which helps the dangerous pathogen stick to human host cells and tissues, is revealed in part in the 1 March issue of Molecular Microbiology.

Scientists hope that unravelling the secrets of this protective layer's molecular structure might reveal possible targets for new drugs to treat C. difficile infections.

The 'jacket' is a surface layer, or 'S-layer', made of two different proteins, with half a million of each covering every C. difficile cell. The S-layer is believed to help C. difficile cells colonise the human gut, where they release sickness-causing toxins.

The new research was led by scientists from Imperial College London, funded by the European Union Seventh Framework Programme and the Medical Research Council. They used X-ray crystallography techniques to produce the first ever high-resolution images of the structure of LMW-SLP, one of the two proteins that make up C. difficile's S-layer. The team also produced lower resolution images of the two S-layer proteins linked together into the 'building block' which makes up the layer over all.

Understanding exactly how the S-layer is formed, and how it works, could reveal new ways of fighting C. difficile infections, because without the S-layer, the pathogen cells cannot function, and die. The team behind the new study say that the long term aim is to use this structural knowledge to design a drug that will target the S-layer, leading to cell death, and the defeat of infection.

In addition, the research team behind today's study say that understanding the S-layer could be the key to developing a preventative vaccine for C. difficile. This is because the protein outer-shell of the pathogen is 'seen' and recognised as dangerous by the human immune system, triggering an immune response. This means that in the future, if the structure of these proteins is fully understood, they could one day be administered as a vaccine to pre-prepare the body to fight infection.

Professor Neil Fairweather, from Imperial College London's Department of Life Sciences, explains that his group's findings are an important in developing new treatments for C. difficile infections:

"This is the first time anyone has gained detailed information about the molecular structure of C. difficile's protective 'jacket', because analysing the two protein components is painstakingly difficult work. We're confident that continuing this work to better understand the formation of this protective coat and its exact function will reveal new targets for effective drugs to beat this dangerous pathogen, and could even lead to an effective vaccine."

The team's next steps will be to produce a high resolution image of the structure of the whole S-layer, and to further analyse the areas where the two proteins link together in the layer.

Clostridium difficile is a bacterial pathogen that is present naturally in the gut of about three percent of adults, and 66 percent of children. It does not cause problems in healthy people, but antibiotics used to treat other health problems can sweep away the 'good' bacteria in the gut, leaving C. difficile free to multiply dramatically causing severe diarrhoea and inflammation.

Because C. difficile is usually caused by taking antibiotics, most cases happen in hospitals or care homes. C. difficile is naturally resistant to lots of antibiotic treatments, and can recur once contracted. There are now more cases of C. difficile than MRSA in the UK, and in 2007 over 8000 deaths were associated with C. difficile.


Contact: Danielle Reeves
Imperial College London

Related biology news :

1. Scientists discover why teeth form in a single row
2. Einstein scientists receive $10 million NIH grant
3. From stem cells to new organs: Stanford and NYU scientists cross threshold in regenerative medicine
4. 40 minority scientists receive travel fellowships to Experimental Biology 2009 in New Orleans
5. Vanderbilt scientists invent worlds smallest periscopes
6. UCLA stem cells scientists make electrically active motor neurons from iPS cells
7. UCR scientists identify stem-cell genes that help form plant organs
8. Scientists mine drugs database for new diabetes treatment
9. Atmospheric scientists trace the human role in Indonesian forest fires
10. Scientists identify human monoclonal antibodies effective against bird and seasonal flu viruses
11. Scientists identify human monoclonal antibodies effective against bird, seasonal flu viruses
Post Your Comments:
(Date:6/22/2016)... 2016   Acuant , the leading ... has partnered with RightCrowd ® to ... Management, Self-Service Kiosks and Continuous Workforce Assurance. ... functional enhancements to existing physical access control ... with an automated ID verification and authentication ...
(Date:6/20/2016)... , June 20, 2016 Securus Technologies, ... technology solutions for public safety, investigation, corrections and ... prisons involved, it has secured the final acceptance ... facilities for Managed Access Systems (MAS) installed. Furthermore, ... facilities to be installed by October, 2016. MAS ...
(Date:6/9/2016)...  Perkotek an innovation leader in attendance control systems is proud to announce the ... employers to make sure the right employees are actually signing in, and to even ... ... ... ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... - FACIT has announced the creation of a ... Propellon Therapeutics Inc. ("Propellon" or "the Company"), to ... of first-in-class WDR5 inhibitors for the treatment of ... an exciting class of therapies, possessing the potential ... patients. Substantial advances have been achieved with the ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. is ... has received AOAC Research Institute approval 061601. , “This is another AOAC-RI approval ... Bob Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods ...
(Date:6/23/2016)... , June 23, 2016   EpiBiome , ... secured $1 million in debt financing from Silicon Valley ... up automation and to advance its drug development efforts, ... new facility. "SVB has been an incredible ... the services a traditional bank would provide," said Dr. ...
(Date:6/23/2016)... ... ... In a new case report published today in STEM CELLS Translational Medicine, ... after being treated for breast cancer benefitted from an injection of stem cells derived ... debilitating, frequent side effect of cancer treatment. , Lymphedema refers to the ...
Breaking Biology Technology: