Navigation Links
Scientists uncover previously unknown mechanism of memory formation

JUPITER, FL, January 30, 2013 It takes a lot to make a memory. New proteins have to be synthesized, neuron structures altered. While some of these memory-building mechanisms are known, many are not. Some recent studies have indicated that a unique group of molecules called microRNAs, known to control production of proteins in cells, may play a far more important role in memory formation than previously thought.

Now, a new study by scientists on the Florida campus of The Scripps Research Institute has for the first time confirmed a critical role for microRNAs in the development of memory in the part of the brain called the amygdala, which is involved in emotional memory. The new study found that a specific microRNAmiR-182was deeply involved in memory formation within this brain structure.

"No one had looked at the role of microRNAs in amygdala memory," said Courtney Miller, a TSRI assistant professor who led the study. "And it looks as though miR-182 may be promoting local protein synthesis, helping to support the synapse-specificity of memories."

In the new study, published in the Journal of Neuroscience, the scientists measured the levels of all known microRNAs following an animal model of learning. A microarray analysis, which enables rapid genetic testing on a large scale, showed that more than half of all known microRNAs are expressed in the amygdala. Seven of those microRNAs increased and 32 decreased when learning occurred.

The study found that, of the microRNAs expressed in the brain, miR-182 had one of the lowest levels and these decreased further with learning. Despite these very low levels, its overexpression prevented the formation of memory and led to a decrease in proteins that regulate neuronal plasticity (neurons' ability to adapt) through changes in structure.

These findings suggest that learning-induced suppression of miR-182 is a main supporting factor in the formation of long-term memory in the amagdala, as well as an underappreciated mechanism for regulating protein synthesis during memory consolidation, Miller said.

Further analysis identified miR-182 as a repressor of proteins that control actina major component of the cytoskeleton, the scaffolding that holds cells together.

"We know that memory formation requires changes in dendritic spines on the neurons through regulation of the actin cytoskeleton," Miller said. "When miR-182 is suppressed through learning it halts, at least in part, repression of actin-regulating proteins, so there's a good chance that miR-182 exerts important control over the actin cytoskeleton."

Miller is now interested in whether or not high levels of miR-182 accumulate in the aging brain, something that would help to explain a tendency toward memory loss in the elderly. She also notes that other research has shown that animal models lacking miR-182 had no significant physical or cellular abnormalities, suggesting that miR-182 could be a viable target for drug discovery.

Contact: Eric Sauter
Scripps Research Institute

Related biology news :

1. Stanford scientists develop gene therapy approach to grow blood vessels in ischemic limbs
2. Queens scientists seek vaccine for Pseudomonas infection
3. Scientists produce eye structures from human blood-derived stem cells
4. American Society of Plant Biologists honors early career women scientists
5. Brandeis scientists win prestigious prize for circadian rhythms research
6. Scientists discover new method of proton transfer
7. Salk scientists open new window into how cancers override cellular growth controls
8. - Now Featuring Bespoke Pages for China’s Life Scientists
9. Scientists win $2 million to study new pathway in development and maintenance of lymphoma
10. UGA scientists reveal genetic mutation depicted in van Goghs sunflower paintings
11. Genetic mutation depicted in van Goghs sunflower paintings revealed by scientists
Post Your Comments:
Related Image:
Scientists uncover previously unknown mechanism of memory formation
(Date:10/29/2015)... 29, 2015  Connected health pioneer, Joseph C. ... of technology-enabled health and wellness, and the business opportunities ... The Internet of Healthy Things . Long ... even existed, Dr. Kvedar, vice president, Connected Health, Partners ... delivery, moving care from the hospital or doctor,s office ...
(Date:10/29/2015)... 2015 Today, LifeBEAM , a ... 2XU, a global leader in technical performance sports ... with advanced bio-sensing technology. The hat will allow ... key biometrics to improve overall training performance. As ... will bring together the most advanced technology, extensive ...
(Date:10/27/2015)... -- Munich, Germany , October ... automatically maps data from mobile eye tracking videos created ... that they can be quantitatively analyzed with SMI,s analysis ... , October 28-29, 2015. SMI,s Automated Semantic Gaze ... tracking videos created with SMI,s Eye Tracking Glasses ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... Nov. 24, 2015  Asia-Pacific (APAC) holds the ... (CRO) market. The trend of outsourcing to low-cost ... but higher volume share for the region in ... however, margins in the CRO industry will improve. ... ( ), finds that the market ...
(Date:11/24/2015)... -- Cepheid (NASDAQ: CPHD ) today announced that ... and invited investors to participate via webcast. ... 1, 2015 at 11.00 a.m. Eastern Time --> ... 1, 2015 at 11.00 a.m. Eastern Time --> ... NY      Tuesday, December 1, 2015 at 11.00 ...
(Date:11/24/2015)... 24, 2015 /CNW/ - iCo Therapeutics ("iCo" or "the ... results for the quarter ended September 30, 2015. ... dollars and presented under International Financial Reporting Standards ... ," said Andrew Rae , President & ... are not only value enriching for this clinical ...
(Date:11/24/2015)... ... 24, 2015 , ... International Society for Pharmaceutical Engineering (ISPE) ... annual events for pharmaceutical manufacturing: 2015 Annual Meeting. The conference took place in ... largest number of attendees in more than a decade. , “The 2015 ...
Breaking Biology Technology: