Navigation Links
Scientists synthesize unique family of anti-cancer compounds
Date:2/12/2010

New Haven, Conn.Yale University scientists have streamlined the process for synthesizing a family of compounds with the potential to kill cancer and other diseased cells, and have found that they represent a unique category of anti-cancer agents. Their discovery appears in this week's online edition of the Journal of the American Chemical Society.

The team studied a family of compounds known as the kinamycins, which are naturally produced by bacteria during metabolism and are known for their potent toxicity. For years scientists have guessed that a core structure common to the different compounds within the group was responsible for this toxicity. Until now, chemists could not study the core structure because there was no simple way to create it in the laboratory.

Now the Yale team has developed a new method to recreate this structure that allows them to synthesize the kinamycins with much greater efficiency than previously possible. While scientists have produced kinamycins in the laboratory in the past, the Yale team was able to halve the number of steps required to go from simple, easily obtainable precursors to the complete moleculefrom 24 down to 12.

"By shortening the synthesis we can now prepare these molecules in the quantities required for further studies, including animal studies and even clinical trials," said Seth Herzon, assistant professor of chemistry and lead author of the study.

Working with researchers at the Yale School of Medicine and the Yale Chemical Genomics Screening Facility, the team has begun testing several of the compounds against cancer cells, with promising preliminary results. Next, they will work to understand the exact mechanism that makes the compoundswhich are benign on their ownhighly toxic once they penetrate cells.

"The key to success will be whether we can develop selectivitywhether we can kill cancer cells in the presence of non-cancerous tissue," Herzon said. "Based on what we already know about the chemical reactivity of these molecules, I'm optimistic we can do this."

The reactive core of the kinamycins also plays a key role in another compound the team is studying, called lomaiviticin A, which is even more toxic and could prove even more effective in destroying cancer cells. "Lomaiviticin A is the big fish. It's more potent than the kinamycins, but it's also much harder to synthesize," Herzon said.

Both the kinamycins and lomaiviticin A are unique in their toxicity profiles, Herzon said, representing a new category of anti-cancer agents.

"There's no close analogy to draw from to predict how these molecules will behave, which will make it especially interesting to see where this research takes us," Herzon said. "This research involves a lot of exciting chemistry, but it also has real applications in biology and human medicine."


'/>"/>

Contact: Suzanne Taylor Muzzin
suzanne.taylormuzzin@yale.edu
203-432-8555
Yale University
Source:Eurekalert

Related biology news :

1. ASU scientists develop universal DNA reader to advance faster, cheaper sequencing efforts
2. USDA scientists sequence genome of grass that can be a biofuel model crop
3. Prevention is key research goal for premature babies, scientists say
4. Caltech neuroscientists discover brain area responsible for fear of losing money
5. Virus-free technique enables Stanford scientists to easily make stem cells pluripotent
6. Scientists identify first genetic variant linked to biological aging in humans
7. ARS scientists turn to a wild oat to combat crown rust
8. Scientists find quantum mechanics at work in photosynthesis
9. Scripps Research scientists find two compounds that lay the foundation for a new class of AIDS drug
10. Humble garden pea helps Kew scientists develop cool, noninvasive diagnostic test of seed quality
11. Scripps Research scientists create new way to screen libraries of 10 million or more compounds
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... SAN FRANCISCO and BANGALORE, India ... part of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... service provider, today announced a global partnership that ... convenient way to use mobile banking and payment services. ... Mobility is a key innovation area for financial services, but ...
(Date:4/26/2016)... and LONDON , ... Finacle, part of EdgeVerve Systems, a product subsidiary ... Onegini today announced a partnership to integrate the ...      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ) ... provide their customers enhanced security to access and ...
(Date:4/19/2016)... 20, 2016 The new GEZE ... compact web-based "all-in-one" system solution for all door components. ... or the door interface with integration authorization management system, ... systems. The minimal dimensions of the access control and ... building installations offer considerable freedom of design with regard ...
Breaking Biology News(10 mins):
(Date:5/18/2016)... Calif. (PRWEB) , ... May 18, 2016 , ... ... awarded the Luis Villalobos Award to Cognition Therapeutics at the annual ACA Summit last ... company that is financed by one of ACA’s member angel groups. It is the ...
(Date:5/18/2016)... , May 18, 2016 The Biotech ... does not mean that there are no opportunities ahead. Today, ... Inc. (NASDAQ: THLD ), Seattle Genetics Inc. (NASDAQ: ... ), and Ophthotech Corp. (NASDAQ: OPHT ). Sign ... at: http://www.activewallst.com/ Threshold Pharmaceuticals ...
(Date:5/18/2016)... ... 18, 2016 , ... Every day, more than 5,400 ER ... Costing more than $56 billion in direct costs annually, asthma remains a critical ... the suffering associated with uncontrolled asthma can be overwhelmingly disproportionate and better managed,” ...
(Date:5/18/2016)... ... ... Ryan Benton was diagnosed with Duchenne Muscular Dystrophy (DMD) at the age ... DMD is a relatively common progressive genetic disorder, which causes aggressive deterioration of the ... He met with the founder of the Stem Cell Institute in Panama ...
Breaking Biology Technology: