Navigation Links
Scientists solve 40-year mystery of how sodium controls opioid brain signaling
Date:1/12/2014

LA JOLLA, CAJanuary 12, 2014Scientists have discovered how the element sodium influences the signaling of a major class of brain cell receptors, known as opioid receptors. The discovery, from The Scripps Research Institute (TSRI) and the University of North Carolina (UNC), suggests new therapeutic approaches to a host of brain-related medical conditions.

"It opens the door to understanding opioid related drugs for treating pain and mood disorders, among others," said lead author Dr. Gustavo Fenalti, a postdoctoral fellow in the laboratory of Professor Raymond C. Stevens of TSRI's Department of Integrative Structural and Computational Biology.

"This discovery has helped us decipher a 40-year-old mystery about sodium's control of opioid receptors," said Stevens, who was senior author of the paper with UNC pharmacologist Professor Bryan Roth. "It is amazing how sodium sits right in the middle of the receptor as a co-factor or allosteric modulator."

The findings appear in an advanced online publication in the journal Nature on January 12, 2014.

A Sharper Image

The researchers revealed the basis for sodium's effect on signaling with a high-resolution 3-D view of an opioid receptor's atomic structure. Opioid receptors are activated by peptide neurotransmitters (endorphins, dynorphins and enkephalins) in the brain. They can also be activated by plant-derived and synthetic drugs that mimic these peptides: among them morphine, codeine, oxycodone and heroin.

Despite these receptors' crucial importance in health and disease, including pain disorders and addictions, scientists have only begun to understand in detail how they work. Opioid receptors are inherently flimsy and fragile when produced in isolation, and thus have been hard to study using X-ray crystallography, the usual structure-mapping method for large proteins.

In recent years, the Stevens laboratory has helped pioneer the structure determination of G protein-coupled receptors. Although the first crystallographic structures of opioid receptors were determined in 2012, these structural models weren't fine-grained enough to solve a lingering mystery, particularly for the human delta opioid receptor.

That mystery concerned the role of sodium. The element is perhaps best known to biologists as one of the key "electrolytes" needed for the basic workings of cells. In the early 1970s, researchers in the laboratory of neuroscientist Solomon Snyder at Johns Hopkins University, who had helped discover opioid receptors, found evidence that sodium ions also act as a kind of switch on opioid receptor signaling. They noted that at concentrations normally found in brain fluid, these ions reduced the ability of opioid peptides and drugs like morphine to interact with opioid receptors.

How sodium could exert this indirect ("allosteric") effect on opioid receptor activity was unclearand has remained an unsolved puzzle for decades. Now that scientists have discovered the mechanism of sodium's effect, then in principle they can exploit it to develop better opioid-receptor-targeting drugs.

A Switch Controlling Pain, Depression and Mood Disorders

For the new study, the team constructed a novel, fusion-protein-stabilized version of one of the main opioid receptors in the human brain, known as the delta opioid receptor, and managed to form crystals of it for X-ray crystallography. The latter revealed the receptor's 3-D atomic structure to a resolution of 1.8 Angstroms (180 trillionths of a meter)the sharpest picture yet of an opioid receptor.

"Such a high resolution is really necessary to be able to understand in detail how the receptor works," said Stevens.

The analysis yielded several key details of opioid receptor structure and function, most importantly the details of the "allosteric sodium site," where a sodium ion can slip in and modulate receptor activity.

The team was able to identify the crucial amino acids that hold the sodium ion in place and transmit its signal-modulating effect. "We found that the presence of the sodium ion holds the receptor protein in a shape that gives it a different affinity for its corresponding neurotransmitter peptides," Fenalti said.

With the structural data in hand, the researchers designed new versions of the receptor, in which key sodium-site amino-acids were mutated, to see how this would affect receptor signaling. Co-lead author Research Associate Patrick M. Giguere and colleagues in Roth's Laboratory at UNC, which has long collaborated with the Stevens laboratory, tested these mutant receptors and found that certain amino-acid changes cause radical shifts in the receptor's normal signaling response.

The most interesting shifts involved a little-understood secondary or "alternative" signaling route, known as the beta-arrestin pathway, whose activity can have different effects depending on the type of brain cell involved. Some drugs that normally bind to the delta opioid receptor and have little or no effect on the beta-arrestin pathway turned out to strongly activate this pathway in a few of these mutant receptors.

In practical terms, these findings suggests a number of ways in which new drugs could target these receptorsand not only delta opioid receptors but also the other two "classical" opioid receptors, mu and kappa opioid receptors. "The sodium site architecture and the way it works seems essentially the same for all three of these opioid receptor types," said Fenalti.


'/>"/>

Contact: Mika Ono
mikaono@scripps.edu
858-784-2052
Scripps Research Institute
Source:Eurekalert  

Related biology news :

1. Harvard scientists control cells following transplantation, from the inside out
2. UCLA life scientists, colleagues differentiate microbial good and evil
3. Symbiotic fungi inhabiting plant roots have major impact on atmospheric carbon, scientists say
4. UMass Medical School faculty recognized as 1 of nations top young scientists
5. Scientists find a new mechanism underlying depression
6. Boost careers of female scientists: Make sure women help choose meeting speakers
7. MBL scientists to study coastal waterbird habitats through funding for Obamas Climate Action Plan
8. Scientists uncover image of muscular dystrophy defect & design targeted drug candidates
9. Scientists look to tackle bacterium that is major cause of diarrhea, vomiting
10. Study led by NUS scientists provides new insights into cause of human neurodegenerative disease
11. Scientists find a groovy way to influence specialization of stem cells
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Scientists solve 40-year mystery of how sodium controls opioid brain signaling
(Date:6/22/2016)... WASHINGTON , June 22, 2016 On ... highly-anticipated call to industry to share solutions for the ... by U.S. Customs and Border Protection (CBP), explains that ... nationals are departing the United States ... criminals, and to defeat imposters. Logo - ...
(Date:6/15/2016)... June 15, 2016 Transparency ... titled "Gesture Recognition Market by Application Market - Global Industry Analysis ... 2024". According to the report, the  global gesture recognition ... 2015 and is estimated to grow at a ... by 2024.  Increasing application of gesture ...
(Date:6/3/2016)... , June 3, 2016 ... Management) von Nepal ... und Lieferung hochsicherer geprägter Kennzeichen, einschließlich Personalisierung, ... führend in der Produktion und Implementierung von ... der Ausschreibung im Januar teilgenommen, aber Decatur ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Rolf K. Hoffmann, ... faculty of the University of North Carolina Kenan-Flagler Business School effective ... at UNC Kenan-Flagler, with a focus on the school’s international efforts, leading classes ...
(Date:6/24/2016)... Epic Sciences unveiled a liquid biopsy ... PARP inhibitors by targeting homologous recombination deficiency (HRD) ... test has already been incorporated into numerous clinical ... Over 230 clinical trials are investigating ... PARP, ATM, ATR, DNA-PK and WEE-1. Drugs targeting ...
(Date:6/23/2016)... ... 2016 , ... UAS LifeSciences, one of the leading manufacturers ... Probiotics, into Target stores nationwide. The company, which has been manufacturing high quality ... list of well-respected retailers. This list includes such fine stores as Whole Foods, ...
(Date:6/23/2016)... , June 23, 2016 Houston Methodist ... the Cy-Fair Sports Association to serve as their ... agreement, Houston Methodist Willowbrook will provide sponsorship support, ... connectivity with association coaches, volunteers, athletes and families. ... the Cy-Fair Sports Association and to bring Houston ...
Breaking Biology Technology: