Navigation Links
Scientists reveal why life got big in the Earth's early oceans
Date:1/24/2014

Why did life forms first begin to get larger and what advantage did this increase in size provide? UCLA biologists working with an international team of scientists examined the earliest communities of large multicellular organisms in the fossil record to help answer this question.

The life scientists used a novel application of modeling techniques at a variety of scales to understand the scientific processes operating in the deep sea 580 million years ago. The research reveals that an increase in size provided access to nutrient-carrying ocean flow, giving an advantage to multicellular eukaryotes that existed prior to the Cambrian explosion of animal life, said David Jacobs, a professor of ecology and evolutionary biology in the UCLA College of Letters and Science and senior author of the research.

The study findings are published Jan. 23 in the journal Current Biology.

A multidisciplinary research team reconstructed ocean flow in the fossil community using "canopy flow models," a particular class of flow models consistent with the dense spacing of organisms on the ancient seabed.

The research was inspired by the NASA Astrobiology Institute's "Foundations of Complex Life" meeting in Newfoundland, Canada, where the oldest known fossil communities of large, multicellular organisms collectively called rangeomorphs are found on rock surfaces exposed along the coast. These feather- or brush-shaped creatures ranged in size from several millimeters to tens of centimeters in height.

The scientists addressed the absorption properties of the rangeomorphs' surfaces based on the model's results. These rangeomorphs could not photosynthesize because they lived in the extreme depths, where light did not penetrate, Jacobs said. Their complex surfaces suggest that they absorbed dissolved nutrients directly from the water which raises the question of how rangeomorphs competed with bacteria, which also specialize in absorbing nutrients from seawater.

Understanding what advantages rangeomorphs gained over bacteria by growing tall would provide scientists with insights into what drove the evolution of the first communities of large life forms in the fossil record, Jacobs said.

The scientists discovered that rangeomorphs had an advantage when they grew off the sea floor, as they were exposed to higher flow, generating much greater "nutrient uptake."

The inducement to "grow upwards is a function of the canopy, which controls the velocity of ocean water as it moves through the rangeomorph community," Jacobs said. "As individuals grow upwards, the properties of water flow change, which promotes further upward growth."

Both the canopy-flow and surface-uptake models represent significant advances in scientists' ability to understand the ecology of fossil and modern communities, Jacobs said. Such modeling may prove critical to understanding processes that affect ocean life today, such as coral bleaching, he said.


'/>"/>

Contact: Stuart Wolpert
swolpert@support.ucla.edu
310-206-0511
University of California - Los Angeles
Source:Eurekalert

Related biology news :

1. Johns Hopkins scientists identify a key to bodys use of free calcium
2. Scripps Florida scientists offer new insight into neuron changes brought about by aging
3. Spider silk ties scientists up in knots
4. York scientists investigate the fiber of our being
5. Scientists warn: Conservation work in zoos is too random
6. Scientists develop promising drug candidates for pain, addiction
7. Damon Runyon Cancer Research Foundation grants prestigious awards to 20 top young scientists
8. Scientists solve 40-year mystery of how sodium controls opioid brain signaling
9. Harvard scientists control cells following transplantation, from the inside out
10. UCLA life scientists, colleagues differentiate microbial good and evil
11. Symbiotic fungi inhabiting plant roots have major impact on atmospheric carbon, scientists say
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/23/2017)... Research and Markets has announced the addition of the ... Forecast to 2025" report to their offering. ... The Global Vehicle Anti-Theft System ... over the next decade to reach approximately $14.21 billion by 2025. ... forecasts for all the given segments on global as well as ...
(Date:3/22/2017)... March 21, 2017 Optimove , ... by retailers such as 1-800-Flowers and AdoreMe, today ... Recommendations and Replenishment. Using Optimove,s machine learning algorithms, ... product and replenishment recommendations to their customers based ... predictions of customer intent drawn from a complex ...
(Date:3/20/2017)... At this year,s CeBIT Chancellor Dr. Angela Merkel visited the ... the DERMALOG stand together with the Japanese Prime Minster Shinzo Abe. ... largest German biometrics company the two government leaders could see the three ... as DERMALOG´s multi-biometrics system.   Continue Reading ... ...
Breaking Biology News(10 mins):
(Date:8/15/2017)... ... August 15, 2017 , ... Nanomedical Diagnostics ... biotherapeutics development, announces the launch of the new NHS Agile biosensor chip ... binding data for a wide range of molecules, including small and large molecules, ...
(Date:8/15/2017)... ... August 15, 2017 , ... ... by various biotic and abiotic factors. During this educational webinar, participants will learn ... as well as gain a better understanding of how genomics is important for ...
(Date:8/11/2017)... 11, 2017  Market researcher Kalorama Information ... article regarding the telemedicine market.  The telemedicine ... Information.  The article, "Heart and Asthma ...  used information from Kalorama Information,s Remote Patient ... Market  (Sleep, Diabetes, Vital Signs /EKG ...
(Date:8/10/2017)... ... August 09, 2017 , ... ... week-- as students. From August 14th through the 16th, the University City Science ... in the summer of 2016, provides Philadelphia-based middle school educators an opportunity for ...
Breaking Biology Technology: