Navigation Links
Scientists reveal why life got big in the Earth's early oceans
Date:1/24/2014

Why did life forms first begin to get larger and what advantage did this increase in size provide? UCLA biologists working with an international team of scientists examined the earliest communities of large multicellular organisms in the fossil record to help answer this question.

The life scientists used a novel application of modeling techniques at a variety of scales to understand the scientific processes operating in the deep sea 580 million years ago. The research reveals that an increase in size provided access to nutrient-carrying ocean flow, giving an advantage to multicellular eukaryotes that existed prior to the Cambrian explosion of animal life, said David Jacobs, a professor of ecology and evolutionary biology in the UCLA College of Letters and Science and senior author of the research.

The study findings are published Jan. 23 in the journal Current Biology.

A multidisciplinary research team reconstructed ocean flow in the fossil community using "canopy flow models," a particular class of flow models consistent with the dense spacing of organisms on the ancient seabed.

The research was inspired by the NASA Astrobiology Institute's "Foundations of Complex Life" meeting in Newfoundland, Canada, where the oldest known fossil communities of large, multicellular organisms collectively called rangeomorphs are found on rock surfaces exposed along the coast. These feather- or brush-shaped creatures ranged in size from several millimeters to tens of centimeters in height.

The scientists addressed the absorption properties of the rangeomorphs' surfaces based on the model's results. These rangeomorphs could not photosynthesize because they lived in the extreme depths, where light did not penetrate, Jacobs said. Their complex surfaces suggest that they absorbed dissolved nutrients directly from the water which raises the question of how rangeomorphs competed with bacteria, which also specialize in absorbing nutrients from seawater.

Understanding what advantages rangeomorphs gained over bacteria by growing tall would provide scientists with insights into what drove the evolution of the first communities of large life forms in the fossil record, Jacobs said.

The scientists discovered that rangeomorphs had an advantage when they grew off the sea floor, as they were exposed to higher flow, generating much greater "nutrient uptake."

The inducement to "grow upwards is a function of the canopy, which controls the velocity of ocean water as it moves through the rangeomorph community," Jacobs said. "As individuals grow upwards, the properties of water flow change, which promotes further upward growth."

Both the canopy-flow and surface-uptake models represent significant advances in scientists' ability to understand the ecology of fossil and modern communities, Jacobs said. Such modeling may prove critical to understanding processes that affect ocean life today, such as coral bleaching, he said.


'/>"/>

Contact: Stuart Wolpert
swolpert@support.ucla.edu
310-206-0511
University of California - Los Angeles
Source:Eurekalert

Related biology news :

1. Johns Hopkins scientists identify a key to bodys use of free calcium
2. Scripps Florida scientists offer new insight into neuron changes brought about by aging
3. Spider silk ties scientists up in knots
4. York scientists investigate the fiber of our being
5. Scientists warn: Conservation work in zoos is too random
6. Scientists develop promising drug candidates for pain, addiction
7. Damon Runyon Cancer Research Foundation grants prestigious awards to 20 top young scientists
8. Scientists solve 40-year mystery of how sodium controls opioid brain signaling
9. Harvard scientists control cells following transplantation, from the inside out
10. UCLA life scientists, colleagues differentiate microbial good and evil
11. Symbiotic fungi inhabiting plant roots have major impact on atmospheric carbon, scientists say
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/6/2017)... Forecasts by Product Type (EAC), ... End-Use (Transportation & Logistics, Government & Public Sector, Utilities ... Generation Facility, Nuclear Power), Industrial, Retail, Business Organisation (BFSI), ... you looking for a definitive report on the $27.9bn ... ...
(Date:4/3/2017)... WASHINGTON , April 3, 2017 /PRNewswire-USNewswire/ ... single-cell precision engineering platform, detected a statistically ... cell product prior to treatment and objective ... highlight the potential to predict whether cancer ... prior to treatment, as well as to ...
(Date:3/28/2017)... 28, 2017 The report "Video ... Monitors, Servers, Storage Devices), Software (Video Analytics, VMS), and ... Global Forecast to 2022", published by MarketsandMarkets, the market ... is projected to reach USD 75.64 Billion by 2022, ... The base year considered for the study is 2016 ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... ... implantation and pregnancy rates in frozen and fresh in vitro fertilization (IVF) ... and maternal age to IVF success. , After comparing the results from the ...
(Date:10/10/2017)... ... 10, 2017 , ... For the second time in three ... Mentoring Award. Representatives of the FirstHand program travelled to Washington, D.C. Tuesday, October ... US2020’s mission is to change the trajectory of STEM education in America by ...
(Date:10/10/2017)... ... October 10, 2017 , ... USDM ... firm for the life sciences and healthcare industries, announces a presentation by Subbu ... , The presentation, “Automating GxP Validation for Agile Cloud Platforms,” will present a ...
(Date:10/9/2017)... Charlotte, N.C. (PRWEB) , ... October 09, 2017 , ... ... Purple announced Dr. Christopher Stubbs, a professor in Harvard University’s Departments of Physics and ... Dr. Stubbs was a member of the winning team for the 2015 Breakthrough Prize ...
Breaking Biology Technology: