Navigation Links
Scientists reveal the lifestyle evolution of wild marine bacteria

Marine bacteria in the wild organize into professions or lifestyle groups that partition many resources rather than competing for them, so that microbes with one lifestyle, such as free-floating cells, flourish in proximity with closely related microbes that may spend life attached to zooplankton or algae.

This new information about microbial groups and the methodology behind it could change the way scientists approach the classification of microbes by making it possible to determine on a large scale, relatively speaking, the genetic basis for ecological niches. Microbes drive almost all chemical reactions in the ocean; its important to identify the specific professions held by different groups.

This is the first method to accurately differentiate the ecological niche or profession among large groups of microbes in the ocean, said Professor Martin Polz, a microbiologist in MITs Department of Civil and Environmental Engineering. He and colleague Professor Eric Alm, a computational biologist, published a paper describing their research in the May 23 issue of Science.

The nature of reproduction in microbes makes it impossible to define populations based on the ability of individuals within a species to share genes, as we do with larger animals. Its only by determining bacterias ecological niche that scientists can classify them into populations. But microbes dont live in natural population groups when cultured in a lab. So scientists must catch bacteria in the wild, then examine them genetically to determine their lifestyle.

Most methods in use either over or underestimate greatly the number of microbial populations in a sample, leading either to a confusing array of populations, or a few large, but extremely diverse groups, said Polz. Erics method takes genetic information and groups the microbes into genetically distinct populations based on their preference for different habitats. Although this sounds like a simple problem, it is exceedingly difficult with microbes, because we have no species concept that would allow us to identify the genetic structure expected for populations. Microbial habitats differ on such small scales that they are invisible to us.

Polz and former graduate student Dana Hunt, now a postdoctoral researcher at the University of Hawaii, created a large and accurate genetic data set by isolating and identifying over 1,000 strains of vibrio bacteria from a sample of eight liters of seawater gathered near Plum Island, Mass., in the spring and fall. To achieve accuracy in their identification of strains, they selected a gene whose molecular clockthe rate at which a gene accumulates random mutations over timewas well-suited to the task.

The trick in many ways is choosing a gene that has a molecular clock that ticks at the right rate, said Polz. In particular, if its too slow, you might lump organisms into a single group that you would actually like to differentiate. We chose a gene that accumulates mutations fairly fast and thus allowed us to differentiate closely related groups of individuals and map the ecological data we collected onto their family tree.

Alm and graduate student Lawrence David wrote an algorithm to make a conservative estimate of the minimum number of different habitats occupied by the vibrios (whether they live on small or large particles and thrive in the cool or warm months, etc.). They then combined information about habitat with phylogeny (the evolutionary history of groups of genes), and apportioned the original strains into 25 distinct populations and mapped their habitats back to a common ancestor, showing when and how each group diverged from the ancestral lifestyle.

What is really new about our approach is that we were able to combine both molecular data (DNA sequences) with ecological data in a single mathematical framework, said Alm. This allowed us to solve the inverse problem of taking samples of organisms from different environments and figuring out their underlying habitats. In essence, we modeled the evolution of a microbes lifestyle over millions of years.

One splendid example of the difficulty of applying the term species to a single-celled creature: 17 of those 25 populations are called V. splendidus, a name that was previously assigned to them based on classical taxonomic techniques. Alm and Polz can see now that V. splendidus has differentiated into several ecological populations.

Alm and Polz believe they caught at least one of those V. splendidus populations in the act of switching from one ecological niche (thriving on zooplankton) toward a new niche (attaching to small organic particles). Of course, this process takes millions of years, so the current population of scientists may never know for certain.


Contact: Denise Brehm
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering

Related biology news :

1. Scientists discover a molecular scaffold that guides connections between brain cells
2. Scientists paint viruses to track their fate in the body
3. Incense is psychoactive: Scientists identify the biology behind the ceremony
4. Scientists decipher fruit tree genome for the first time
5. Scientists discover small RNAs that regulate gene expression and protect the genome
6. Argonne scientists use lasers to align molecules
7. Too hot to handle! Scientists identify heat sensing regulator
8. Scientists dig deeper into the genetics of schizophrenia by evaluating microRNAs
9. Scientists endure Arctic for last campaign prior to CryoSat-2 launch
10. Scientists discover why plague is so lethal
11. UF scientists discover compound that could lead to new blood pressure drugs
Post Your Comments:
Related Image:
Scientists reveal the lifestyle evolution of wild marine bacteria
(Date:11/4/2015)... York , November 4, 2015 ... a new market report published by Transparency Market Research "Home ... Growth, Trends and Forecast 2015 - 2022", the global home ... US$ 30.3 bn by 2022. The market is estimated ... forecast period from 2015 to 2022. Rising security needs ...
(Date:10/29/2015)... ARBOR, Mich. , Oct. 29, 2015 /PRNewswire/ ... Eurofins Genomics for U.S. distribution of its DNA ... DNA-seq kit and Rubicon,s new ThruPLEX Plasma-seq kit. ... to enable the preparation of NGS libraries for ... plasma for diagnostic and prognostic applications in cancer ...
(Date:10/27/2015)... October 27, 2015 Munich, ... Gaze Mapping technology (ASGM) automatically maps data from mobile ... Glasses , so that they can be quantitatively ... Munich, Germany , October 28-29, 2015. ... data from mobile eye tracking videos created with ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... ... November 30, 2015 , ... Imagine ... Jurassic World: The Exhibition, opening in March 2016 at Melbourne Museum in Melbourne, ... tour including several North American tour dates. The Exhibition is based on Universal ...
(Date:11/30/2015)... 30, 2015  Aytu BioScience, Inc. (OTCQB: AYTU), a ... conditions, will present at two upcoming investor conferences. Aytu ... real-time virtual conference, to be held December 3, 2015, ... be held December 2 nd & 3 rd ... and streamed live via webcast. Josh Disbrow ...
(Date:11/30/2015)... Israel , Nov. 30, 2015 ... leading developer of adult stem cell technologies for neurodegenerative diseases, ... has been awarded an additional grant of approximately $735,000 from ... (OCS). This grant, the second this year, brings the total ... $1.8 million (approximately NIS7 million).  ...
(Date:11/26/2015)... , November 26, 2015 /PRNewswire/ ... --> Accutest Research Laboratories, ... Contract Research Organization (CRO), has formed ... Cancer Center - Temple Health for ... ,     (Photo: ) , ...
Breaking Biology Technology: