Navigation Links
Scientists reveal how organisms avoid carbon monoxide poisoning
Date:9/20/2011

Scientists have discovered how living organisms including humans avoid poisoning from carbon monoxide generated by natural cell processes.

Carbon monoxide is a toxic gas that can prove fatal at high concentrations; the gas is most commonly associated with faulty domestic heating systems and car fumes, and is often referred to as 'the silent killer'.

But carbon monoxide chemical symbol CO is also produced within our bodies through the normal activity of cells. Scientists have long wondered how organisms manage to control this internal carbon monoxide production so that it does no harm.

University of Manchester researchers, working with colleagues at the University of Liverpool and Eastern Oregon University, have now identified the mechanism whereby cells protect themselves from the toxic effects of the gas at these lower concentrations.

Carbon monoxide molecules should be able to readily bind with protein molecules found in blood cells, known as haemproteins. When they do, for instance during high concentration exposure from inhaling, they impair normal cellular functions, such as oxygen transportation, cell signaling and energy conversion. It is this that causes the fatal effects of carbon monoxide poisoning.

The haemproteins provide an ideal 'fit' for the CO molecules, like a hand fitting a glove, so the natural production of the gas, even at low concentrations, should in theory bind to the haemproteins and poison the organism, except it doesn't.

"Toxic carbon monoxide is generated naturally by chemical metabolic reactions in cells but we have shown how organisms avoid poisoning by these low concentrations of 'natural' carbon monoxide," said Professor Nigel Scrutton, who is based in the Manchester Interdisciplinary Biocentre within the Faculty of Life Sciences.

"Our work identifies a mechanism by which haemproteins are protected from carbon monoxide poisoning at low, physiological concentrations of the gas. Working with a simple, bacterial haemprotein, we were able to show that when the haemprotein 'senses' the toxic gas is being produced within the cell, it changes its structure through a burst of energy and the carbon monoxide molecule struggles to bind with it at these low concentrations.

"This mechanism of linking the CO binding process to a highly unfavourable energetic change in the haemprotein's structure provides an elegant means by which organisms avoid being poisoned by carbon monoxide derived from natural metabolic processes. Similar mechanisms of coupling the energetic structural change with gas release may have broad implications for the functioning of a wide variety of haemprotein systems. For example, haemproteins bind other gas molecules, including oxygen and nitric oxide. Binding of these gases to haemproteins is important in the natural functions of the cell."

Co-author Dr Derren Heyes, also based in the Manchester Interdisciplinary Biocentre, added: "We were surprised to discover that haemproteins could have a simple mechanism involving unfavourable energetic changes in structure to prevent carbon monoxide binding. Without this structural change carbon monoxide would bind to the haemoprotein almost a million times more tightly, which would prevent the natural cellular function of the haemprotein."

The scientists say the work has potential for the use of haem-based sensors for gas sensing in a wide range of biotechnological applications. For example, such sensors could be used to monitor gas concentrations in industrial manufacturing processes or biomedical gas sensors, where accurate control of gas concentration is critical.

The study, headed by Professor Samar Hasnain, from the University of Liverpool's Institute of Integrative Biology, is published in Proceedings of the National Academy of Science.


'/>"/>

Contact: Aeron Haworth
aeron.haworth@manchester.ac.uk
44-161-275-8383
University of Manchester
Source:Eurekalert

Related biology news :

1. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
2. Scientists identify novel inhibitor of human microRNA
3. Argonne scientists peer into heart of compound that may detect chemical, biological weapons
4. MU scientists go green with gold, distribute environmentally friendly nanoparticles
5. Scientists identify gene that may contribute to improved rice yield
6. Scientists discover why a mothers high-fat diet contributes to obesity in her children
7. MU scientists see how HIV matures into an infection
8. Earth scientists keep an eye on Texas
9. Thinking it through: Scientists call for policy to guide biofuels industry toward sustainability
10. Scientists identify a molecule that coordinates the movement of cells
11. Scientists Find new migratory patterns for Mediterranean and Western Atlantic bluefin tuna
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2016)... , April 13, 2016  IMPOWER physicians supporting Medicaid ... setting a new clinical standard in telehealth thanks to ... leveraging the higi platform, IMPOWER patients can routinely track ... and body mass index, and, when they opt in, ... convenient visit to a local retail location at no ...
(Date:3/22/2016)... PUNE, India , March 22, 2016 ... new market research report "Electronic Sensors Market for ... Fingerprint, Proximity, & Others), Application (Communication & ... and Geography - Global Forecast to 2022", ... consumer industry is expected to reach USD ...
(Date:3/15/2016)... , March 15, 2016 --> ... published by Transparency Market Research "Digital Door Lock Systems Market ... 2015 - 2023," the global digital door lock systems market ... in 2014 and is forecast to grow at a CAGR ... micro, small and medium enterprises (MSMEs) across the world and ...
Breaking Biology News(10 mins):
(Date:5/26/2016)... ... May 26, 2016 , ... ... announced several positive developments that position the Company for the future. Kinder ... transaction, Craig F. Kinghorn has been appointed Chairman of the Board, Curtis D. ...
(Date:5/25/2016)... ... May 25, 2016 , ... ... of fracture-specific plating options designed to address fractures of the distal tibia and ... , The Acumed Ankle Plating System 3 is composed of seven plate families ...
(Date:5/25/2016)... ... May 25, 2016 , ... WEDI, the nation’s leading authority on the ... Charles W. Stellar has been named by the WEDI Board of Directors as WEDI’s ... an executive leader with more than 35 years of experience in healthcare, association management ...
(Date:5/24/2016)... May 24, 2016   MedyMatch Technology Ltd ., the ... intelligence, real-time decision support tools in the emergency room, announced ... 2016 Israeli Advanced Technology Industries (IATI) BioMed Conference. ... 15th National Life Sciences and Technology Week, and ... Intercontinental Hotel in Tel Aviv, Israel . ...
Breaking Biology Technology: