Navigation Links
Scientists reveal how natural antibiotic kills tuberculosis bacterium
Date:9/17/2012

HEIDELBERG, 17 September 2012 A natural product secreted by a soil bacterium shows promise as a new drug to treat tuberculosis report scientists in a new study published in EMBO Molecular Medicine. A team of scientists working in Switzerland has shown how pyridomycin, a natural antibiotic produced by the bacterium Dactylosporangium fulvum, works. This promising drug candidate is active against many of the drug-resistant types of the tuberculosis bacterium that no longer respond to treatment with the front-line drug isoniazid.

"Nature and evolution have equipped some bacteria with potent defense mechanisms to protect them against other bugs that share their habitat. Screening natural products generated by these organisms is therefore a powerful way to find possible new drugs to fight infectious diseases," said Stewart Cole, lead author of the study, EMBO Member and a professor at the cole Polytechnique Fdrale de Lausanne (EPFL), Switzerland. "Using this approach we have shown that nature's antibiotic pyridomycin is a very selective killer of Mycobacterium tuberculosis, the bacterium responsible for tuberculosis in humans. It is also active against mycobacteria that have developed resistance to front-line drug treatments such as isoniazid."

Tuberculosis causes up to two million deaths annually. There is a significant need for new drugs since the effectiveness of current antibiotics is compromised by the increasing prevalence of drug-resistant tuberculosis. The most effective drugs used to treat tuberculosis, for example isoniazid and rifampicin, are often no longer effective.

The researchers identified a protein, the enzyme NADH-dependent enoyl(acyl carrier protein) reductase or InhA, which is the principal target for the antibiotic. "By selecting and isolating M. tuberculosis mutants resistant to pyridomycin and sequencing their genome we have found that a single gene named inhA is responsible for resistance to this natural product," added Cole.

The gene inhA is needed to produce the InhA protein, which is already known as a target for tuberculosis drug isoniazid. It turns out that pyridomycin can bind to the same pocket on the InhA enzyme as isoniazid but at a different site and in a way that involves a different sequence of molecular events. It is these differences that give pyridomycin the ability to overcome drug-resistant strains of mycobacteria.

The scientists showed that in live bacteria treatment with pyridomycin leads to the depletion of mycolic acids, fatty acids that are an essential component of the bacterial cell wall.

"Our finding that pyridomycin kills Mycobacterium tuberculosis by inhibiting InhA, even in clinically isolated bacteria that are resistant to the drug isoniazid, provides a great opportunity to develop pyridomycin or a related agent for the treatment of drug-resistant tuberculosis," remarked Cole.


'/>"/>
Contact: Barry Whyte
barry.whyte@embo.org
49-622-188-91108
European Molecular Biology Organization
Source:Eurekalert

Related biology news :

1. Stanford scientists develop gene therapy approach to grow blood vessels in ischemic limbs
2. Queens scientists seek vaccine for Pseudomonas infection
3. Scientists produce eye structures from human blood-derived stem cells
4. American Society of Plant Biologists honors early career women scientists
5. Brandeis scientists win prestigious prize for circadian rhythms research
6. Scientists discover new method of proton transfer
7. Salk scientists open new window into how cancers override cellular growth controls
8. WileyChina.com - Now Featuring Bespoke Pages for China’s Life Scientists
9. Scientists win $2 million to study new pathway in development and maintenance of lymphoma
10. UGA scientists reveal genetic mutation depicted in van Goghs sunflower paintings
11. Genetic mutation depicted in van Goghs sunflower paintings revealed by scientists
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... , April 13, 2017 UBM,s Advanced Design ... will feature emerging and evolving technology through its ... Summits will run alongside the expo portion of the ... panels and demonstrations focused on trending topics within 3D ... design and manufacturing event will take place June 13-15, 2017 ...
(Date:4/11/2017)... Research and Markets has announced the addition ... their offering. ... tracking market to grow at a CAGR of 30.37% during the ... 2017-2021, has been prepared based on an in-depth market analysis with ... its growth prospects over the coming years. The report also includes ...
(Date:4/6/2017)... , April 6, 2017 ... RFID, ANPR, Document Readers, by End-Use (Transportation & Logistics, ... Facility, Oil, Gas & Fossil Generation Facility, Nuclear Power), ... Educational, Other) Are you looking for a ... sector? ...
Breaking Biology News(10 mins):
(Date:6/20/2017)... ... , ... Do More with OHAUS , With the launch of the new ... weighing industry, to extending its expertise across the entire laboratory to a range of ... allowing for its customers to 'Do More' in the lab. , Efficiency ...
(Date:6/19/2017)... ... June 19, 2017 , ... EDETEK, ... reported today that it is launching two new additions of its award-winning cloud-based ... new capabilities at the DIA 2017 Annual Meeting in Chicago, IL, June 19-22, ...
(Date:6/16/2017)... ... June 16, 2017 , ... Cognition Corporation , ... two more sessions of its “From the Helm” Webinar Series. , The ... online templates for design control exercises. Led by David Cronin, Cognition’s CEO, the ...
(Date:6/15/2017)... ... June 15, 2017 , ... New ... farmers new options for managing Palmer amaranth and other broadleaf weeds resistant to ... precautions are necessary. Auxin herbicides are known to drift and to cause harm ...
Breaking Biology Technology: