Navigation Links
Scientists reveal how cholera bacterium gains a foothold in the gut

A team of biologists at the University of York has made an important advance in our understanding of the way cholera attacks the body. The discovery could help scientists target treatments for the globally significant intestinal disease which kills more than 100,000 people every year.

The disease is caused by the bacterium Vibrio cholerae, which is able to colonise the intestine usually after consumption of contaminated water or food. Once infection is established, the bacterium secretes a toxin that causes watery diarrhoea and ultimately death if not treated rapidly. Colonisation of the intestine is difficult for incoming bacteria as they have to be highly competitive to gain a foothold among the trillions of other bacteria already in situ.

Scientists at York, led by Dr. Gavin Thomas in the University's Department of Biology, have investigated one of the important routes that V. cholerae uses to gain this foothold. To be able to grow in the intestine the bacterium harvests and then eats a sugar, called sialic acid, that is present on the surface of our gut cells.

Collaborators of the York group at the University of Delaware, USA, led by Professor Fidelma Boyd, had shown previously that eating sialic acid was important for the survival of V. cholerae in animal models, but the mechanism by which the bacteria recognise and take up the sialic was unknown.

The York research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), demonstrates that the pathogen uses a particular kind of transporter called a TRAP transporter to recognise sialic acid and take it up into the cell. The transporter has particular properties that are suited to scavenging the small amount of available sialic acid. The research also provided some important basic information about how TRAP transporters work in general.

The leader of the research in York, Dr. Gavin Thomas, said: "This work continues our discoveries of how bacteria that grow in our body exploit sialic acid for their survival and help us to take forward our efforts to design chemicals to inhibit these processes in different bacterial pathogens."

The research is published in the latest issue of the Journal of Biological Chemistry and was primarily the work of Dr Christopher Mulligan, a postdoctoral fellow in the Dr Thomas's laboratory.


Contact: David Garner
University of York

Related biology news :

1. Rice, UCSD scientists probe form, function of mysterious protein
2. Scientists discover new clue to the chemical origins of life
3. MIT neuroscientists explore how longstanding conflict influences empathy for others
4. EMBL Monterotondo researcher wins award for early career scientists
5. Broadcast study of ocean acidification to date helps scientists evaluate effects on marine life
6. Scripps Research scientists provide new understanding of chronic pain
7. Scientists uncover novel mechanism of glioblastoma development
8. Walk this way: Scientists and MBL physiology students describe how a motor protein steps out
9. Scientists identify gene crucial to normal development of lungs and brain
10. Scientists look to microbes to unlock Earths deep secrets
11. Nobel history illustrates gap in grants to young scientists
Post Your Comments:
(Date:6/22/2016)... On Monday, the Department of Homeland Security ... solutions for the Biometric Exit Program. The Request for ... (CBP), explains that CBP intends to add biometrics to ... United States , in order to deter visa ... Logo - ...
(Date:6/9/2016)... , June 9, 2016  Perkotek an innovation leader in attendance control systems ... seamlessly log work hours, for employers to make sure the right employees are actually ... ... ... ...
(Date:6/2/2016)... 2, 2016   The Weather Company , an IBM ... an industry-first capability in which consumers will be able to ... ask questions via voice or text and receive relevant information ... Marketers have long sought an advertising solution that ... be personal, relevant and valuable; and can scale across millions ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... to announce the launch of their brand, UP4™ Probiotics, into Target stores nationwide. ... years, is proud to add Target to its list of well-respected retailers. This ...
(Date:6/23/2016)... , June 23, 2016 Houston ... with the Cy-Fair Sports Association to serve as ... the agreement, Houston Methodist Willowbrook will provide sponsorship ... and connectivity with association coaches, volunteers, athletes and ... with the Cy-Fair Sports Association and to bring ...
(Date:6/23/2016)... --  EpiBiome , a precision microbiome engineering company, today ... from Silicon Valley Bank (SVB). The financing will allow ... drug development efforts, as well as purchase additional lab ... been an incredible strategic partner to us – one ... provide," said Dr. Aeron Tynes Hammack , EpiBiome,s ...
Breaking Biology Technology: