Navigation Links
Scientists retrace evolution with first atomic structure of an ancient protein
Date:8/16/2007

EUGENE, Ore.(Aug. 16, 2007)Scientists have determined for the first time the atomic structure of an ancient protein, revealing in unprecedented detail how genes evolved their functions.

"Never before have we seen so clearly, so far back in time," said project leader Joe Thornton, an evolutionary biologist at the University of Oregon. "We were able to see the precise mechanisms by which evolution molded a tiny molecular machine at the atomic level, and to reconstruct the order of events by which history unfolded."

The work involving the protein is detailed in a paper appearing online Aug. 16 in Science Express, where the journal Science promotes selected research in advance of regular publication.

A detailed understanding of how proteins the workhorses of every cell have evolved has long eluded evolutionary biologists, in large part because ancient proteins have not been available for direct study. So Thornton and Jamie Bridgham, a postdoctoral scientist in his lab, used state-of-the-art computational and molecular techniques to re-create the ancient progenitors of an important human protein.

Thornton then collaborated with University of North Carolina biochemists Eric Ortlund and Matthew Redinbo, who used ultra-high energy X-rays from a stadium-sized Advanced Photon Source at Argonne National Laboratory near Chicago to chart the precise position of each of the 2,000 atoms in the ancient proteins. The groups then worked together to trace how changes in the protein's atomic architecture over millions of years caused it to evolve a crucial new function uniquely responding to the hormone that regulates stress.

"This is the ultimate level of detail," Thornton said. "We were able to see exactly how evolution tinkered with the ancient structure to produce a new function that is crucial to our own bodies today. Nobody's ever done that before."

The researchers focused on the glucocorticoid receptor (GR), a protein in humans and other vertebrates that allows cells to respond to the hormone cortisol, which regulates the body's stress response. The scientists' goal was to understand the process of evolution behind the GR's ability to specifically interact with cortisol. They used computational techniques and a large database of modern receptor sequences to determine the ancient GR's gene sequence from a time just before and just after its specific relationship with cortisol evolved. The ancient genes which existed more than 400 million years ago were then synthesized, expressed, and their structures determined using X-ray crystallography, a state-of-the art technique that allows scientists to see the atomic architecture of a molecule. The project represents the first time the technique has been applied to an ancient protein.

The structures allowed the scientists to identify exactly how the new function evolved. They found that just seven historical mutations, when introduced into the ancestral receptor gene in the lab, recapitulated the evolution of GR's present-day response to cortisol. They were even able to deduce the order in which these changes occurred, because some mutations caused the protein to lose its function entirely if other "permissive" changes, which otherwise had a negligible effect on the protein, were not in place first.

"These permissive mutations are chance events. If they hadn't happened first, then the path to the new function could have become an evolutionary road not taken," Thornton said. "Imagine if evolution could be rewound and set in motion again: a very different set of genes, functions and processes might be the outcome."

The atomic structure revealed exactly how these mutations allowed the new function to evolve. The most radical one remodeled a whole section of the protein, bringing a group of atoms close to the hormone. A second mutation in this repositioned region then created a tight new interaction with cortisol. Other earlier mutations buttressed particular parts of the protein so they could tolerate this eventual remodeling.

"We were able to walk through the evolutionary process from the distant past to the present day," said Ortlund, who is now at Emory University in Atlanta. "Until now, we've always had to look at modern proteins and just guess how they evolved."


'/>"/>

Contact: Zack Barnett
zbarnett@uoregon.edu
541-346-3145
University of Oregon
Source:Eurekalert

Related biology news :

1. Wisconsin scientists grow critical nerve cells
2. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
3. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
4. UAB scientists discover the origin of a mysterious physical force
5. Fox Chase Cancer Center scientists identify immune-system mutation
6. Scientists Replicate Hepatitis C Virus in Laboratory
7. Scientists detect probable genetic cause of some Parkinsons disease cases
8. Scientists find missing enzyme for tuberculosis iron scavenging pathway
9. Scientists seek answers on what activates deadly anthrax spores
10. Yale Scientists Find MicroRNA Regulates Ras Cancer Gene
11. Scientists collaborate to assess health of global environment
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/17/2017)... , April 17, 2017 NXT-ID, Inc. ... company, announces the filing of its 2016 Annual Report on Form ... Exchange Commission. ... Form 10-K is available in the Investor Relations section of the ... on the SEC,s website at http://www.sec.gov . 2016 ...
(Date:4/11/2017)... 11, 2017 Research and Markets has announced ... report to their offering. ... global eye tracking market to grow at a CAGR of 30.37% ... Tracking Market 2017-2021, has been prepared based on an in-depth market ... landscape and its growth prospects over the coming years. The report ...
(Date:4/5/2017)... Allen Institute for Cell Science today announces the launch ... dynamic digital window into the human cell. The website ... deep learning to create predictive models of cell organization, ... suite of powerful tools. The Allen Cell Explorer will ... resources created and shared by the Allen Institute for ...
Breaking Biology News(10 mins):
(Date:6/22/2017)... ... 22, 2017 , ... AESKU.GROUP, an innovation leader in ... Technologien GmbH, thereby expanding its product portfolio to include allergy and food intolerance ... atopic eczema or a food allergy. Allergies are escalating to epidemic proportions and ...
(Date:6/22/2017)... ... 2017 , ... The first human cell line HeLa, established in 1951, has ... cross-contamination of human cell lines with HeLa cells were published. Until recently, cross-contamination and ... and is associated with dramatic consequences for research. , In this educational webinar, ...
(Date:6/20/2017)... ... ... Biologist Dawn Maslar MS has found a biomarker that she claims verifies ... The Neuroscience of Meeting, Dating, Losing Your Mind, and Finding True Love, Maslar found ... step, in my estimation, was to scientifically track the evidence of commitment in men,” ...
(Date:6/20/2017)... ... June 20, 2017 , ... Do More with OHAUS , With the ... trusted supplier in the weighing industry, to extending its expertise across the entire laboratory ... immunoassays, hybridizations and more, allowing for its customers to 'Do More' in ...
Breaking Biology Technology: