Navigation Links
Scientists present 'moving' theory behind bacterial decision-making
Date:11/24/2008

Biochemists at North Carolina State University have answered a fundamental question of how important bacterial proteins make life-and-death decisions that allow them to function, a finding that could provide a new target for drugs to disrupt bacterial decision-making processes and related diseases.

In a study published this month in the journal Structure, the NC State scientists show for the first time that the specific movements of these important bacterial proteins, called transition-state regulators, guide how the proteins bind with DNA and thus control a variety of functions. These rare proteins are like army generals sizing up a battlefield; while they all look the same and have the same rank, their highly specialized "wiggles" allow them to figure out how to bind to different parts of DNA, triggering defense capabilities, for example, or commands to set up camp and chow down.

"For the first time, we've shown that proteins with identical shapes have different movements, and these movements allow proteins to select proper DNA targets that lead to tens or hundreds of processes," says Dr. John Cavanagh, William Neal Reynolds Distinguished Professor of Molecular and Structural Biochemistry at NC State and the corresponding author of the paper. "Motion is really important. If the proteins didn't move, they wouldn't be able to bind to DNA and therefore to function."

Cavanagh and NC State senior biochemistry researcher Dr. Benjamin Bobay, a paper co-author, say that the findings present a new way of thinking about stopping bacteria. If a drug or antibiotic can stymie the motion of the transition-state regulators, the thinking goes, bacteria won't be able to figure out where to bind to DNA, effectively shutting the bacteria down. Killing a general, therefore, would stop the infantry from taking the battlefield.

Besides the fundamental knowledge about bacterial protein movement and DNA binding, the Structure paper also sheds light on the specific bacterial protein responsible for producing anthrax toxins.

One of the transition-state regulators studied by the NC State biochemists, called AbrB, helps control the production of the three toxins in anthrax: lethal factor, edema factor and protective antigen. Production of all three of these toxins is necessary to make anthrax lethal.

Cavanagh and Bobay say that knowledge of AbrB's function could make it a likely target for a drug that would knock out its function. That would prevent anthrax from "going lethal."

"We now know more about the protein that causes you to die from anthrax poisoning and a brand new way of understanding how important proteins bind to targets," Cavanagh said. "This presents a whole new paradigm for drug design in the arms race against harmful bacteria and disease."


'/>"/>

Contact: Dr. John Cavanagh
john_cavanagh@ncsu.edu
919-513-4349
North Carolina State University
Source:Eurekalert

Related biology news :

1. UK scientists working to help cut ID theft
2. Scientists show that mitochondrial DNA variants are linked to risk factors for type 2 diabetes
3. Comet probes reveal evidence of origin of life, scientists claim
4. Scientists link fragile X tremor/ataxia syndrome to binding protein in RNA
5. Male elephants get photo IDs from scientists
6. Scientists retrace evolution with first atomic structure of an ancient protein
7. Muscle mass: Scientists identify novel mode of transcriptional regulation during myogenesis
8. Carnegie Mellon scientists develop nanogels that enable controlled delivery of carbohydrate drugs
9. Clemson scientists shed light on molecules in living cells
10. Scientists tackle mystery mountain illness
11. T. rex quicker than Becks, say scientists
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/20/2017)... March 20, 2017 At this year,s CeBIT Chancellor ... biometrics manufacturer DERMALOG. The Chancellor came to the DERMALOG stand together with ... this year,s CeBIT partner country. At the largest German biometrics company the ... fingerprint, face and iris recognition as well as DERMALOG´s multi-biometrics system.   ... ...
(Date:3/9/2017)... Australia , March 9, 2017 4Dx ... prestigious World Lung Imaging Workshop at the University of ... was invited to deliver the latest data to world ... recognised event brings together leaders at the forefront of ... in lung imaging. "The quality of ...
(Date:3/6/2017)... Calif. , March 6, 2017 ... and sales technology, today announced Predictive Sales Coach ... for infusing actionable sales intelligence into Salesforce. This ... automatically enable their sales organizations with deep knowledge ... that allow for intelligent engagement. Predictive Sales Coach ...
Breaking Biology News(10 mins):
(Date:3/29/2017)... HILDEN, Germany , March 29, 2017 ... PRIME STANDARD: QIA) today announced the U.S. launch of its ipsogen ... was cleared by the U.S. Food and Drug Administration as a qualitative in ... DNA extracted from EDTA whole blood.* ... ipsogen JAK2 assay is processed on QIAGEN,s Rotor-Gene ® Q ...
(Date:3/29/2017)... ... March 29, 2017 , ... (March 29, 2017) — ... been approved as an active member of the Mexican Direct Selling Association ... and consumers in relationship marketing. This professional organization fosters loyal and fair competition ...
(Date:3/29/2017)... CA (PRWEB) , ... March 29, 2017 , ... ... cutting edge instrumentation for cell-based assays, disperses a quarterly travel award to noteworthy ... Today the company announced that its new round of awards are being ...
(Date:3/29/2017)... /PRNewswire/ - The University of Missouri Research Reactor (MURR ... Sterigenics International, and General Atomics (GA), announce that MURR,s ... U.S. Nuclear Regulatory Commission (NRC). This marks a critical ... Once operational, production from this facility will be capable ... which currently must be imported from outside ...
Breaking Biology Technology: