Navigation Links
Scientists learn what makes nerve cells so strong
Date:4/15/2013

How do nerve cells -- which can each be up to three feet long in humans -- keep from rupturing or falling apart?

Axons, the long, cable-like projections on neurons, are made stronger by a unique modification of the common molecular building block of the cell skeleton. The finding, which may help guide the search for treatments for neurodegenerative diseases, was reported in the April 10 issue of Neuron by researchers at the University of Illinois at Chicago College of Medicine.

Microtubules are long, hollow cylinders that are a component of the cytoskeleton in all cells of the body. They also support transport of molecules within the cell and facilitate growth. They are made up of polymers of a building-block substance called tubulin.

"Except for neurons, cells' microtubules are in constant dynamic flux -- being taking apart and rebuilt," says Scott Brady, professor and head of anatomy and cell biology at UIC and principal investigator on the study. But only neurons grow so long, he said, and once created they must endure throughout a person's life, as much as 80 to 100 years. The microtubules of neurons are able to withstand laboratory conditions that cause other cells' microtubules to break apart.

Brady had been able to show some time ago that the neuron's stability depended on a modification of tubulin.

"But when we tried to figure out what the modification was, we didn't have the tools," he said.

Yuyu Song, a former graduate student in Brady's lab and the first author of the study, took up the question. "It was like a detective story with many possibilities that had to be ruled out one by one," she said. Song, who is now a post-doctoral fellow at Howard Hughes Medical Institute at Yale School of Medicine, used a variety of methods to determine the nature of the modification and where it occurs.

She found that tubulin is modified by the chemical bonding of polyamines, positively charged molecules, at sites that might otherwise be chinks where tubulin could be broken down, causing the microtubules to fall apart. She was also able to show that the enzyme transglutaminase was responsible for adding the protective polyamines.

The blocking of a vulnerable site on tubulin would explain the extraordinary stability of neuron microtubules, said Brady. However, convincing others required the "thorough and elegant work" that Song brought to it, he said. "It's such a radical finding that we needed to show all the key steps along the way."

The authors also note that increased microtubule stability correlates with decreased neuronal plasticity -- and both occur in the process of aging and in some neurodegenerative diseases. Continued research, they say, may help identify novel therapeutic approaches to prevent neurodegeneration or allow regeneration.


'/>"/>

Contact: Jeanne Galatzer-Levy
jgala@uic.edu
312-996-1583
University of Illinois at Chicago
Source:Eurekalert

Related biology news :

1. Inter-American Network of Science Academies celebrates women scientists -- April 17 event
2. A novel surface marker helps scientists fish out mammary gland stem cells
3. Scientists stress need for national marine biodiversity observation network
4. Scientists decode genome of painted turtle, revealing clues to extraordinary adaptations
5. 8 M € from EU to enhance access by scientists to the largest European biobanks
6. CSHL neuroscientists show jumping genes may contribute to aging-related brain defects
7. NYSCF scientists develop new protocol to ready induced pluripotent stem cell clinical application
8. Scientists find government justification of new environmental policy unfounded
9. NYSCF scientists develop 3-D stem cell culture technique to better understand Alzheimers disease
10. UGA discovery may allow scientists to make fuel from CO2 in the atmosphere
11. UT MD Anderson scientists uncover the nuclear life of actin
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... India , April 13, 2017 According to ... Proofing, Identity Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, ... MarketsandMarkets™, the IAM Market is expected to grow from USD 14.30 Billion ... Growth Rate (CAGR) of 17.3%. ... MarketsandMarkets ...
(Date:4/11/2017)... , April 11, 2017 NXT-ID, ... security technology company, announces the appointment of independent Directors Mr. ... to its Board of Directors, furthering the company,s corporate ... ... NXT-ID, we look forward to their guidance and benefiting from ...
(Date:4/5/2017)... 4, 2017 KEY FINDINGS The ... at a CAGR of 25.76% during the forecast period ... primary factor for the growth of the stem cell ... MARKET INSIGHTS The global stem cell market ... and geography. The stem cell market of the product ...
Breaking Biology News(10 mins):
(Date:6/15/2017)... TX (PRWEB) , ... June 15, 2017 , ... ... in Saranas, a promising new medical device startup. Dan Parsley, angelMD’s SVP of ... by angelMD members, and this angelMD syndicate is part of Saranas’ recently announced ...
(Date:6/14/2017)... , ... June 14, 2017 , ... ... materials for pumps and process equipment, has appointed Andrew Ondish as Territory Sales ... Ondish holds a B.S. degree in Petroleum Engineering from Colorado School of Mines. ...
(Date:6/14/2017)... ... June 14, 2017 , ... ... of AC0058, a novel irreversible Bruton’s Tyrosine Kinase (BTK) inhibitor, which is ... arthritis and systemic lupus erythematosus. Fifty-six (56) healthy subjects participated in ...
(Date:6/13/2017)... ... 13, 2017 , ... This month, DrugDev is joining forces with ... Society for Clinical Research Sites (SCRS) to make the case for continued sponsor adoption ... the ability for eConsent to improve patient engagement and comprehension. , Statistics show an ...
Breaking Biology Technology: