Navigation Links
Scientists lay out plans for efficient harvesting of solar energy
Date:9/23/2011

Solar power could be harvested more efficiently and transported over long distances using tiny molecular circuits, according to research inspired by new insights into natural photosynthesis.

Incorporating the latest research into how plants, algae and some bacteria use quantum mechanics to optimise energy production via photosynthesis, scientists have set out how to design molecular "circuitry" that is 10 times smaller than the thinnest electrical wire in computer processors. Published in Nature Chemistry, the report discusses how tiny molecular energy grids could capture, direct, regulate and amplify raw solar energy.

Professor Gregory Scholes, lead author from the University of Toronto said: "Solar fuel production often starts with the energy from light being absorbed by an assembly of molecules. The energy is stored fleetingly as vibrating electrons and then transferred to a suitable reactor.

"It is the same in biological systems. In photosynthesis, for example, antenna complexes comprised of chlorophyll capture sunlight and direct the energy to special proteins that help make oxygen and sugars. It is like plugging those proteins (called reaction centres) into a solar power socket."

In natural systems energy from sunlight is captured by 'coloured' molecules called dyes or pigments, but is only stored for a billionth of a second. This leaves little time to route the energy from pigments to the molecular machinery that produces fuel or electricity.

The key to transferring and storing energy very quickly is to harness the collective quantum properties of antennae, which are made up of just a few tens of pigments.

Dr Alexadra Olaya-Castro, co-author of the paper from UCL's department of Physics and Astronomy said: "On a bright sunny day, more than 100 million billion red and blue "coloured" photons strike a leaf each second.

"Under these conditions plants need to be able to both use the energy that is required for growth but also to get rid of excess energy that can be harmful. Transferring energy quickly and in a regulated manner are the two key features of natural light-harvesting systems.

"By assuring that all relevant energy scales involved in the process of energy transfer are more or less similar, natural antennae manage to combine quantum and classical phenomena to guarantee efficient and regulated capture, distribution and storage of the sun's energy."

Summary of lessons from nature about concentrating and distributing solar power with nanoscopic antennae:

1. The basic components of the antenna are efficient light absorbing molecules. These photo-energy absorbers should be appropriately distributed to guarantee that there is an even probability of converting sun energy into vibrating electrons across the whole antennae.

2. Take advantage of the collective properties of light-absorbing molecules by grouping them close together. This will make them exploit quantum mechanical principles so that the antenna can: i) absorb different colours ii) create energy gradients to favour unidirectional transfer and iii) possibly exploit quantum coherence for energy distribution -several energy transfer pathways can be exploited at once.

3. Make sure that the relevant energy scales involved in the energy transfer process are more or less resonant. This will guarantee that both classical and quantum transfer mechanisms are combined to create regulated and efficient distribution of energy across short and long-range distances when many antennae are connected.

4. An antenna should transfer energy not as fast as possible but as fast as necessary. This means that regulatory mechanisms need to be integrated in the antenna. For instance, if necessary, combine light-absorbing molecules with a few local "sinks" that dissipate excess of damaging energy.


'/>"/>

Contact: Clare Ryan
clare.ryan@ucl.ac.uk
44-203-108-3846
University College London
Source:Eurekalert

Related biology news :

1. Scientists probe Indian Ocean for clues to worldwide weather patterns
2. Ties between scientists in South Africa and Europe to strengthen
3. NIH Directors Awards go to 3 Johns Hopkins scientists
4. 2 Scripps Research scientists win prestigious NIH Innovator Awards
5. Scientists turn back the clock on adult stem cells aging
6. Texas AgriLife Research scientists making better melons
7. Scientists reveal how organisms avoid carbon monoxide poisoning
8. Bulletin of the Atomic Scientists publishes Japanese translation of special Fukushima issue
9. Scientists solve long-standing plant biochemistry mystery
10. Online gamers succeed where scientists fail, opening door to new AIDS drug design
11. Gamers succeed where scientists fail
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2017)... and ITHACA, N.Y. , ... and Cornell University, a leader in dairy research, today ... bioinformatics designed to help reduce the chances that the ... the onset of this dairy project, Cornell University has ... for Sequencing the Food Supply Chain, a food safety ...
(Date:5/16/2017)... May 16, 2017  Veratad Technologies, LLC ( www.veratad.com ... age and identity verification solutions, announced today they will ... 2017, May 15 thru May 17, 2017, in ... International Trade Center. Identity impacts the ... in today,s quickly evolving digital world, defining identity is ...
(Date:4/24/2017)... 24, 2017 Janice Kephart , ... Identity Strategy Partners, LLP (IdSP) , today issues ... President Trump,s March 6, 2017 Executive Order: ... vetting can be instilled with greater confidence, enabling ... all refugee applications are suspended by until at ...
Breaking Biology News(10 mins):
(Date:8/16/2017)... and OXFORD, England , Aug. 16, ... consortium for biotech executive search and leadership development, and Virdis ... sectors, have created an exclusive alliance that enables clients to ... "For our clients here in the ... unparalleled access to a diverse population of leadership talent throughout ...
(Date:8/15/2017)... ... August 15, 2017 , ... ... largest Asian exhibitions for analytical and scientific instruments. This year’s symposium, organized by ... Approaches in Mass Spectrometry for Bioanalytical Applications.” This dynamic presentation will discuss novel ...
(Date:8/15/2017)... ... August 15, 2017 , ... Coffea arabica ... biotic and abiotic factors. During this educational webinar, participants will learn about the ... as gain a better understanding of how genomics is important for coffee breeding ...
(Date:8/14/2017)... ... August 14, 2017 , ... The Conference Forum ... which will take place on September 6, 2017 at the Marriott Copley Place in ... of Experimental Medicine, Informatics, and Regulatory Strategy, Pfizer Innovative Research Lab, Pfizer, who leads ...
Breaking Biology Technology: