Navigation Links
Scientists identify bacteria that increase plant growth
Date:1/26/2009

UPTON, NY Through work originally designed to remove contaminants from soil, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and their Belgium colleagues at Hasselt University have identified plant-associated microbes that can improve plant growth on marginal land. The findings, published in the February 1, 2009 issue of Applied and Environmental Microbiology, may help scientists design strategies for sustainable biofuel production that do not use food crops or agricultural land.

"Biofuels are receiving increased attention as one strategy for addressing the dwindling supplies, high costs, and environmental consequences of fossil fuels," said Brookhaven biologist and lead author Daniel (Niels) van der Lelie, who leads the Lab's biofuels research program. "But competition with agricultural resources is an important socioeconomic concern."

Ethanol produced by fermenting corn, for example, diverts an important food source and the land it's grown on for fuel production. A better approach would be to use non-food plants, ideally ones grown on non-agricultural land, for biofuel production.

Van der Lelie's team has experience with plants growing on extremely marginal soil soil contaminated with heavy metals and other industrial chemicals. In prior research, his group has incorporated the molecular "machinery" used by bacteria that degrade such contaminants into microbes that normally colonize poplar trees, and used the trees to clean up the soil. An added benefit, the scientists observed, was that the microbe-supplemented trees grew faster even when no contaminants were present.

"This work led to our current search for bacteria and the metabolic pathways within them that increase biomass and carbon sequestration in poplar trees growing on marginal soils, with the goal of further improving poplar for biofuel production on non-agricultural lands," said co-author Safiyh Taghavi. In the current study, the scientists isolated bacteria normally resident in poplar and willow roots, which are known as endophytic bacteria, and tested selected strains' abilities to increase poplar growth in a controlled greenhouse environment. They also sequenced the genes from four selected bacterial species and screened them for the production of plant-growth promoting enzymes, hormones, and other metabolic factors that might help explain how the bacteria improve plant growth.

"Understanding such microbial-plant interactions may yield ways to further increase biomass," van der Lelie said.

The plants were first washed and surface-sterilized to eliminate the presence of soil bacteria so the scientists could study only the bacteria that lived within the plant tissues true endophytic bacteria. The plant material was then ground up so the bacterial species could be isolated. Individual strains were then supplemented with a gene for a protein that "glows" under ultraviolet light, and inoculated into the roots of fresh poplar cuttings that had been developing new roots in water. The presence of the endophytic bacteria was confirmed by searching for the glowing protein. Some bacterial species were also tested for their ability to increase the production of roots in the poplar cuttings by being introduced during the rooting process rather than afterward.

The results

The scientists identified 78 bacterial endophytes from poplar and willow. Some species had beneficial effects on plant growth, others had no effect, and some resulted in decreased growth. In particular, poplar cuttings inoculated with Enterobacter sp. 638 and Burkholderia cepacia BU72 repeatedly showed the highest increase in biomass production up to 50 percent as compared with non-inoculated control plants. Though no other endophyte species showed such dramatic effects, some were effective in promoting growth in particular cultivars of poplar.

In the studies specifically looking at root formation, non-inoculated plants formed roots very slowly. In contrast, plant cuttings that were allowed to root in the presence of selected endophytes grew roots and shoots more quickly.

The analysis of genes and metabolically important gene products from endophytes resulted in the identification of many possible mechanisms that could help these microbes thrive within a plant environment, and potentially affect the growth and development of their plant host. These include the production of plant-growth-promoting hormones by the endophytic bacteria that stimulate the growth of poplar on marginal soils.

The scientists plan to conduct additional studies to further elucidate these mechanisms. "These mechanisms are of prime importance for the use of plants as feedstocks for biofuels and for carbon sequestration through biomass production," van der Lelie said.


'/>"/>

Contact: Karen McNulty Walsh
kmcnulty@bnl.gov
631-344-8350
DOE/Brookhaven National Laboratory
Source:Eurekalert

Related biology news :

1. Scientists use lasers to measure changes to tropical forests
2. Scientists unlock possible aging secret in genetically altered fruit fly
3. Jefferson scientists discover a key protein regulator of inflammation and cell death
4. MUHC and McGill scientists explain genetic disease first discovered in Quebec 24 years ago
5. Scientists uncover evolutionary keys to common birth disorders
6. Invasive plants challenge scientists in face of environmental change
7. Key to future medical breakthroughs is systems biology, say leading European scientists
8. Scripps scientists develop first examples of RNA that replicates itself indefinitely
9. Florida professor creates endowment for insect scientists
10. NYU scientists discover dangerous new method for bacterial toxin transfer
11. Scientists can now differentiate between healthy cells and cancer cells
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... The Department of Transport Management (DOTM) of ... Dollar project, for the , Supply and Delivery ... IT Infrastructure , to Decatur ... Identity Management Solutions. Numerous renowned international vendors participated in the ... was selected for the most compliant and innovative solution. The ...
(Date:5/24/2016)... , May 24, 2016 Ampronix facilitates superior patient care by providing ...  3D medical LCD display is the latest premium product recently added to the range ... ... ... Sony 3d Imaging- LCD Medical Display- Ampronix News ...
(Date:5/9/2016)... , UAE, May 9, 2016 ... it comes to expanding freedom for high net worth ... Even in today,s globally connected world, there is still ... system could ever duplicate sealing your deal with a ... second passports by taking advantage of citizenship via investment ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 27, 2016  Liquid Biotech USA ... of a Sponsored Research Agreement with The University ... (CTCs) from cancer patients.  The funding will be ... correlate with clinical outcomes in cancer patients undergoing ... then be employed to support the design of ...
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita Politecnica delle Marche in ... peritoneal or pleural mesothelioma. Their findings are the subject of a new article on ... biomarkers are signposts in the blood, lung fluid or tissue of mesothelioma patients that ...
(Date:6/23/2016)... Md. , June 23, 2016 A person ... from the crime scene to track the criminal down. ... the U.S. Food and Drug Administration (FDA) uses DNA evidence ... Sound far-fetched? It,s not. The FDA ... sequencing to support investigations of foodborne illnesses. Put as simply ...
(Date:6/23/2016)... FRANCISCO , June 23, 2016   EpiBiome ... has secured $1 million in debt financing from Silicon ... ramp up automation and to advance its drug development ... its new facility. "SVB has been an ... beyond the services a traditional bank would provide," said ...
Breaking Biology Technology: