Navigation Links
Scientists identify DNA that may contribute to each person's uniqueness

Building on a tool that they developed in yeast four years ago, researchers at the Johns Hopkins University School of Medicine scanned the human genome and discovered what they believe is the reason people have such a variety of physical traits and disease risks.

In a report published in the June 25 issue of Cell, the team identified a near complete catalog of the DNA segments that copy themselves, move around in, and insert themselves here and there in our genome. The insertion locations of these moveable segments transposons in each individual's genome helps determine why some are short or tall, blond or brunette, and more likely or less likely to have cancer or heart disease. The Johns Hopkins researchers say that tracking the locations of transposons in people with specific diseases might lead to the discovery of new disease genes or mutations.

Using their specialized "chip" with DNA spots that contain all of the DNA sequences that appear in the genome, researchers applied human DNA from 15 unrelated people. The research team compared transposon sites first identified in the original published human "index" genome and found approximately 100 new transposon sites in each person screened.

"We were surprised by how many novel insertions we were able to find," says Jef Boeke, Ph.D., Sc.D., an author on the article, a professor of molecular biology and genetics, and co-director of the High Throughput Biology Center of the Institute for Basic Biomedical Sciences at Johns Hopkins. "A single microarray experiment was able to reveal such a large number of new insertions that no one had ever reported before. The discovery taught us that these transposons are much more active than we had guessed."

Each of the 15 different DNA samples used in the study was purified from blood cells before it was applied to a DNA chip. Transposons stick to spots on the DNA chip corresponding to where they're normally found in the genome, letting the researchers locate new ones.

Boeke's group first invented the transposon chip in 2006 for use in yeast. But, it was Kathleen Burns, M.D., Ph.D., now an assistant professor of pathology at Johns Hopkins, who first got the chip to work with human DNA. "The human genome is much larger and more complex, and there are lots of look-a-like DNAs that are not actively moving but are similar to the transposons that we were interested in," says Burns. The trick was to modify how they copied the DNA before it was applied over the chip. The team was able to copy DNA from the transposons of interest, which have just three different genetic code letters than other look-alike DNA segments.

"We've known that genomes aren't static places, but we didn't know how many transposons there are in each one of us; we didn't know how often a child is born with a new one that isn't found in either parent and we didn't know if these DNAs were moving around in diseases like cancer," says Burns. "Now we have a tool for answering these questions. This adds a whole dimension to how we look at our DNA."


Contact: Vanessa McMains
Johns Hopkins Medical Institutions

Related biology news :

1. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
2. Scientists identify novel inhibitor of human microRNA
3. Argonne scientists peer into heart of compound that may detect chemical, biological weapons
4. MU scientists go green with gold, distribute environmentally friendly nanoparticles
5. Scientists identify gene that may contribute to improved rice yield
6. Scientists discover why a mothers high-fat diet contributes to obesity in her children
7. MU scientists see how HIV matures into an infection
8. Earth scientists keep an eye on Texas
9. Thinking it through: Scientists call for policy to guide biofuels industry toward sustainability
10. Scientists identify a molecule that coordinates the movement of cells
11. Scientists Find new migratory patterns for Mediterranean and Western Atlantic bluefin tuna
Post Your Comments:
(Date:11/9/2015)... , Nov. 09, 2015 ... the addition of the "Global Law ... their offering. --> ) ... "Global Law Enforcement Biometrics Market 2015-2019" ... Research and Markets ( ) has ...
(Date:10/29/2015)... , Oct. 29, 2015  The J. Craig Venter ... titled, "DNA Synthesis and Biosecurity: Lessons Learned and Options ... of Health and Human Services guidance for synthetic biology ... --> --> ... has the potential to pose unique biosecurity threats. It ...
(Date:10/29/2015)... YORK , Oct. 29, 2015 ... technology, announced a partnership with 2XU, a global ... to deliver a smart hat with advanced bio-sensing ... and other athletes to monitor key biometrics to ... the strategic partnership, the two companies will bring together ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... (PRWEB) , ... November 24, 2015 , ... The Academy ... Special Interest Group (SIG), MultiGP, also known as Multirotor Grand Prix, to represent the ... last few years. Many AMA members have embraced this type of racing and several ...
(Date:11/24/2015)... ALBANY, New York , November 24, 2015 /PRNewswire/ ... According to a recent market research report released by ... is projected to expand at a CAGR of 17.5% ... titled "Non-invasive Prenatal Testing Market - Global Industry Analysis, ... 2022", estimates the global non-invasive prenatal testing market to ...
(Date:11/24/2015)... CITY , Nov. 24, 2015 /PRNewswire/ - ... "Company") announced today that the remaining 11,000 post-share ... Share Purchase Warrants (the "Series B Warrants") subject ... were exercised on November 23, 2015, which will ... Shares.  After giving effect to the issuance of ...
(Date:11/24/2015)... ... November 24, 2015 , ... In harsh industrial processes, ... for in-line sensors can represent a weak spot where leaking process media is ... retractable sensor housings , which are designed to tolerate extreme process conditions. They ...
Breaking Biology Technology: