Navigation Links
Scientists find new drug target in breast cancer
Date:5/22/2011

Researchers have identified a new protein involved in the development of drug resistance in breast cancer which could be a target for new treatments, they report today in the journal Nature Medicine.

In a mouse model of breast cancer, blocking production of the protein using genetic techniques caused tumours to shrink. The scientists are now looking for new drugs which could achieve a similar effect.

Breast cancer is the most common cancer in the UK, affecting about 46,000 women each year. More than two thirds of breast tumours contain oestrogen receptors, meaning that they require the hormone oestrogen to grow and they can be treated with anti-oestrogen drugs such as tamoxifen. However, many patients develop resistance to these treatments so that the drugs eventually cease to be effective.

In today's study, researchers from Imperial College London found that blocking a protein called LMTK3 in human cancer cells that were resistant to tamoxifen made the cells more responsive to the drug. In a mouse model of the disease, using genetic techniques to block the production of LMTK3 led to a significant decrease in the size of breast tumours.

The researchers also measured levels of LMTK3 in tissue samples taken from women with breast cancer. They found that women who had higher levels of LMTK3 in their tumours tended to live less long and were less likely to respond to hormone therapy. In addition, they found that particular mutations in the gene coding for LMTK3 also correlated with how long a patient would survive.

"Anti-oestrogen drugs have been very successful at allowing women with breast cancer to live longer, but resistance to these drugs is a common problem," said Professor Justin Stebbing, from the Department of Surgery and Cancer at Imperial College London, the study's senior author. "Our results suggest that the action of LMTK3 on the oestrogen receptor has a crucial role in the development of drug resistance.

"We're now looking for drugs that can block the effect of LMTK3, which we could hopefully give to patients to prevent them from becoming resistant to hormone therapy. It will probably take at least five to ten years to develop new treatments that are safe to be used in humans."

Evidence from the laboratory suggests that resistance to hormone therapy might occur when the oestrogen receptor is modified by enzymes called kinases. The team identified LMTK3 as a potential treatment target by screening for kinases that affect how cancer cells respond to oestrogen.

The researchers also compared DNA sequences in the gene coding for LMTK3 in humans and chimpanzees, because chimpanzees are not susceptible to oestrogen receptor positive breast cancer. They found that substantial differences have evolved in these sequences between the two species.

"It's quite intriguing that humans and chimps have evolved these differences in the LMTK3 gene, since related genes are very similar between the two species," said Dr Georgios Giamas, who designed and led the study, from the Department of Surgery and Cancer at Imperial College London.

"We could speculate that evolutionary changes in this gene might have given humans some unknown advantage, but also have made us more susceptible to breast cancer."


'/>"/>

Contact: Sam Wong
sam.wong@imperial.ac.uk
44-207-594-2198
Imperial College London
Source:Eurekalert

Related biology news :

1. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
2. Scientists identify novel inhibitor of human microRNA
3. Argonne scientists peer into heart of compound that may detect chemical, biological weapons
4. MU scientists go green with gold, distribute environmentally friendly nanoparticles
5. Scientists identify gene that may contribute to improved rice yield
6. Scientists discover why a mothers high-fat diet contributes to obesity in her children
7. MU scientists see how HIV matures into an infection
8. Earth scientists keep an eye on Texas
9. Thinking it through: Scientists call for policy to guide biofuels industry toward sustainability
10. Scientists identify a molecule that coordinates the movement of cells
11. Scientists Find new migratory patterns for Mediterranean and Western Atlantic bluefin tuna
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... 2016 First quarter 2016:   ... with the first quarter of 2015 The gross margin ... (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) , ... unchanged, SEK 7,000-8,500 M. The operating margin for 2016 ...
(Date:4/15/2016)... , April 15, 2016 ... "Global Gait Biometrics Market 2016-2020,"  report to their ... ) , ,The global gait biometrics market ... 13.98% during the period 2016-2020. Gait ... which can be used to compute factors that ...
(Date:3/29/2016)... 2016 LegacyXChange, Inc. (OTC: ... SelectaDNA/CSI Protect are pleased to announce our successful effort ... variety of writing instruments, ensuring athletes signatures against counterfeiting ... from athletes on LegacyXChange will be assured of ongoing ... Bill Bollander , CEO states, "By ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Newly created ... services and solutions to the healthcare market. The company's primary focus is on ... sales and marketing strategies that are necessary to help companies efficiently bring their ...
(Date:6/24/2016)... , June 24, 2016 Epic Sciences ... detects cancers susceptible to PARP inhibitors by targeting ... cells (CTCs). The new test has already been ... in multiple cancer types. Over 230 ... damage response pathways, including PARP, ATM, ATR, DNA-PK ...
(Date:6/23/2016)... CAMBRIDGE, Mass. , June 23, 2016 /PRNewswire/ ... the development of novel compounds designed to target ... compound, napabucasin, has been granted Orphan Drug Designation ... in the treatment of gastric cancer, including gastroesophageal ... cancer stemness inhibitor designed to inhibit cancer stemness ...
(Date:6/23/2016)... , June 23, 2016  The Prostate Cancer Foundation (PCF) ... precise treatments and faster cures for prostate cancer. Members of the Class of ... 15 countries. Read More About the Class of 2016 ... ... ...
Breaking Biology Technology: