Navigation Links
Scientists find new class of compounds with great potential for research and drug development
Date:5/15/2011

Scientists from The Scripps Research Institute have identified a class of compounds that could be a boon to basic research and drug discovery.

In a new study, published online in Nature Chemical Biology on May 15, 2011, the researchers show the new compounds powerfully and selectively block the activity of a large and diverse group of enzymes known as "serine hydrolases." Previously discovered serine hydrolase-blocking compounds have been turned into drugs to treat obesity, diabetes, and Alzheimer's disease, and are currently in testing as treatments for pain, anxiety, and depression.

"There are more than 200 serine hydrolases in human cells, but for most we've lacked chemical inhibitors of their activity," said team leader Benjamin F. Cravatt III, professor and chair of the Department of Chemical Physiology at Scripps Research and a member of its Skaggs Institute for Chemical Biology, "so we've had only a limited ability to study them in the lab or to block them to treat medical conditions. This new research allows us to greatly expand our list of these inhibitors."

A Scaffold on Which to Build

Hints from previous work by the Cravatt lab and other groups led the team to investigate a group of molecules known as ureas for their ability to inhibit serine hydrolase activity. In initial tests using recently advanced techniques for measuring enzyme-inhibition strength and specificity, the Scripps Research scientists found that molecules known as 1,2,3-triazole ureas could powerfully inhibit some serine hydrolases without affecting other enzymes.

In the next set of tests, the team synthesized a basic "scaffold" of 1,2,3-triazole urea, and found that it inhibited many more serine hydrolases still without affecting other enzyme classes than did an existing broad inhibitor known as a carbamate. The team then began modifying the scaffold compound to refine its inhibitory activity to specific serine hydrolase targets. This chemical tweaking would once have been a lengthy and burdensome task, but in this case it was done using simple "click chemistry" techniques developed at Scripps Research by Nobel laureate Professor K. Barry Sharpless and his colleague Associate Professor Valery Fokin.

"We can make these modifications in just two chemical steps, which is a great advantage," said Alexander Adibekian, a postdoctoral fellow in the Cravatt lab and first author of the new paper. "And despite this technical simplicity, we were able to generate compounds that were extremely potent and selective."

From the 20 compounds the scientists generated this way, they found three with powerful and highly specific inhibitory effects on individual serine hydrolases with many unknown characteristics.

Most of the study's enzyme-inhibition tests were conducted in mouse cell cultures, a more realistic biochemical environment than traditional "test-tube" biochemical preparations; but for one of the group's inhibitor compounds, AA74-1, the scientists extended their inhibition-measurement techniques to animal models, showing that the compound potently blocked the activity of its target serine hydrolase, acyl-peptide hydrolase, or APEH, without significantly affecting other enzymes.

Not much had been known about APEH, but with its inhibitor AA74-1, the team was able to illuminate the enzyme's normal role in the chemical modification of proteins, showing the levels of more than two dozen proteins dropped sharply when APEH was inhibited.

"This was unexpected and unusual," said Adibekian. "But it's what one wants to see with these compoundsstrong enzyme-inhibiting activity in different tissues, at a low dose. And it's the first time this kind of evaluation has been done in both cultured cells and animal tissues."

The Cravatt lab is now using the expanding number of inhibitors that team members have generated so far to study serine hydrolases with previously unknown or uncertain biological functions.

"We're also using the techniques described in this paper to try to systematically generate more of these inhibitor compounds," said Cravatt. "We see these compounds as basic tools that enable us to determine the roles of serine hydrolases in health and disease. As we understand these enzyme roles better, we expect that some of their inhibitors could become the bases for medicines."


'/>"/>

Contact: Mika Ono
mikaono@scripps.edu
858-784-2052
Scripps Research Institute
Source:Eurekalert

Related biology news :

1. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
2. Scientists identify novel inhibitor of human microRNA
3. Argonne scientists peer into heart of compound that may detect chemical, biological weapons
4. MU scientists go green with gold, distribute environmentally friendly nanoparticles
5. Scientists identify gene that may contribute to improved rice yield
6. Scientists discover why a mothers high-fat diet contributes to obesity in her children
7. MU scientists see how HIV matures into an infection
8. Earth scientists keep an eye on Texas
9. Thinking it through: Scientists call for policy to guide biofuels industry toward sustainability
10. Scientists identify a molecule that coordinates the movement of cells
11. Scientists Find new migratory patterns for Mediterranean and Western Atlantic bluefin tuna
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/22/2017)... LIVERMORE, Calif. , March 21, 2017 ... recognition analytics company serving law enforcement agencies, announced today ... Sheridan as director of public safety business development. ... of diversified law enforcement experience, including a focus on ... Vigilant. In his most recent position, Mr. Sheridan served ...
(Date:3/13/2017)... Future of security: Biometric Face Matching software  ... ... DERMALOGs Face Matching enables to match face pictures against each other or against ... (PRNewsFoto/Dermalog Identification Systems) ... Matching" is the fastest software for biometric Face Matching on the market. The ...
(Date:3/7/2017)... 7, 2017   HireVue , the leading provider ... identify the best talent, faster, today announced the additions ... (CSO) and Diana Kucer as Chief Marketing ... executive team poised to drive continued growth in the ... year of record bookings in 2017. "Companies ...
Breaking Biology News(10 mins):
(Date:4/26/2017)... ... ... LABS, Inc. (LABS) announced in December 2016 that two new Zika Virus ... (NAT) for ZIKV; and Enzyme Immunoassays (EIAs) specific for IgM and IgG ZIKV antibodies. ... under an Investigational New Drug (IND) study protocol. , Now, as part of ...
(Date:4/26/2017)... ... April 26, 2017 , ... ... EMEA and North America this May on the following dates: ... Donald H. Taylor, Chairman of the Learning and Performance Institute will be the ...
(Date:4/26/2017)... April 26, 2017  Genisphere LLC, provider of ... signed a collaborative and sponsored research agreement with ... Muro . The overall goal of the partnership ... various 3DNA designs and formulations after in ... of the vasculature as well as inflammatory responses, ...
(Date:4/25/2017)... , ... April 25, 2017 , ... ... leading supplier of Common Lisp (CL) development tools, and market leader for ... includes key performance enhancements now available within the most effective system for developing ...
Breaking Biology Technology: