Navigation Links
Scientists find clue to mechanisms of gene signaling and regulation

Scientists have discovered a pattern in the DNA sequence of the mouse genome that may play a fundamental part in the way DNA molecules regulate gene expression. The research, led by Emory University scientists along with colleagues at Jacobs University, Bremen, Germany, will be published in the Aug. 22 Advance Online publication of the journal Nature.

Ever since scientists cracked the basic code of chemical bases that comprise the genome of humans and animals, scientists have been uncovering layers of other chemical modifications of gene functioning that can be inherited along with the DNA sequence. This field of discovery, called epigenetics, turns out to be just as important as the genetic sequence itself in controlling whether genes are turned on or off, which determines whether or not they manufacture proteins.

For the past several decades, scientists have known that DNA methylation, a biochemical reaction that adds a methyl group to DNA, is one of these epigenetic processes that marks genes for silencing, which means they do not manufacture proteins. Another kind of modification, called histone methylation, also marks histone proteins that are part of the complex packaging of DNA within the nucleus of cells.

How and where this critical selection process is accomplished--for either silencing or expression-- has been a mystery, however. DNA methylation occurs across the animal genomes, almost always at the C base position of a CG dinucleotide (sequence of two base pairs) in the genetic sequence.

Most expressed genes are based on the simultaneous expression of two copies of a geneone from the mother and one from the father. A small subset of genes, however, are allele-expression specific, meaning only one copy of the gene is expressed, from either the mother or the father, with the gene from the other parent being methylated, or silenced. This kind of differential gene expression is called "imprinting." In the mouse genome, about 80 genes are imprinted.

The Emory and Bremen researchers discovered a biochemical pattern they believe may be a signal to the epigenetic machinery that a particular gene should be imprinted. In the regions of the genome where genes are imprinted, called differentially methylated regions, they found a repeat pattern (periodicity) of 8 to 10 base pairs between two CG dinucleotides. The periodicity is consistent with the structural information from the enzyme responsible for the methylation. The enzyme structure was solved by use of X-ray crystallography at the Advanced Photon Source of Argonne National Laboratory.

"We believe that this repeating pattern of 8 to 10 base pairs between CGs provides a signal for where the differential methylation should take place," says senior author Xiaodong Cheng, PhD, Emory professor of biochemistry and a Georgia Research Alliance eminent scholar. "So far only about 20 regions of differential methylation have been identified in the mouse genome, and we wanted to find out how those regions compared to the rest of the genome."

"Now we can use this new information to find out if any other areas with such 8 to 10 base pair repeats are also differentially methylated. We want to discover how many regions of differential methylation exist and whether or not this imprinting has any impact on disease development."

Scientists already have learned that cancer genes contain "islands" of CG concentrations that are abnormally methylated. Dr. Cheng and his colleagues will focus on these CG islands, trying to discover whether they contain the same repeating pattern as the differentially methylated regions.

Contact: Holly Korschun
Emory University

Related biology news :

1. Wisconsin scientists grow critical nerve cells
2. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
3. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
4. UAB scientists discover the origin of a mysterious physical force
5. Fox Chase Cancer Center scientists identify immune-system mutation
6. Scientists Replicate Hepatitis C Virus in Laboratory
7. Scientists detect probable genetic cause of some Parkinsons disease cases
8. Scientists find missing enzyme for tuberculosis iron scavenging pathway
9. Scientists seek answers on what activates deadly anthrax spores
10. Yale Scientists Find MicroRNA Regulates Ras Cancer Gene
11. Scientists collaborate to assess health of global environment
Post Your Comments:
(Date:3/23/2016)... 2016 Einzigartige ... und Stimmerkennung mit Passwörtern     ... MESG ), ein führender Anbieter digitaler Kommunikationsdienste, ... SpeechPro zusammenarbeitet, um erstmals dessen Biometrietechnologie einzusetzen. ... Möglichkeit angeboten, im Rahmen mobiler Apps neben ...
(Date:3/22/2016)... and SANDY, Utah , March ... operates the highest sample volume laboratory in ... and UNIConnect, leaders in clinical sequencing informatics and molecular ... of a project to establish the informatics infrastructure for ... NSO has been contracted by the Ontario Ministry ...
(Date:3/18/2016)... LONDON , March 18, 2016 ... Established Suppliers of Biometrics, ICT, Manned & Unmanned Vehicles, Physical ... & security companies in the border security market and ... and Europe has led ... your companies improved success. --> defence & ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... ... Amgen, will join the faculty of the University of North Carolina Kenan-Flagler ... of strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s ...
(Date:6/24/2016)... discussions on a range of subjects including policies, debt and ... Poloz. Speaking at a lecture to the Canadian ... to the country,s inflation target, which is set by both ... "In certain areas there needs to be ... why not sit down and address strategy together?" ...
(Date:6/24/2016)... ... ... Researchers at the Universita Politecnica delle Marche in Ancona combed medical journal articles ... findings are the subject of a new article on the Surviving Mesothelioma website. ... blood, lung fluid or tissue of mesothelioma patients that can help point doctors to ...
(Date:6/23/2016)... , June 23, 2016   Boston ... of novel compounds designed to target cancer stemness ... has been granted Orphan Drug Designation from the ... treatment of gastric cancer, including gastroesophageal junction (GEJ) ... inhibitor designed to inhibit cancer stemness pathways by ...
Breaking Biology Technology: