Navigation Links
Scientists discover new method of proton transfer
Date:3/21/2012

Scientists at USC and Lawrence Berkeley National Lab have discovered a new route by which a proton (a hydrogen atom that lost its electron) can move from one molecule to another a basic component of countless chemical and biological reactions.

"This is a radically new way by which proton transfer may occur," said Anna Krylov, professor of chemistry at the USC Dornsife College of Letters, Arts and Sciences. Krylov is a co-corresponding author of a paper on the new process that was published online by Nature Chemistry on March 18.

Krylov and her colleagues demonstrated that protons are not obligated to travel along hydrogen bonds, as previously believed. The finding suggests that protons may move efficiently in stacked systems of molecules, which are common in plant biomass, membranes, DNA and elsewhere.

Armed with the new knowledge, scientists may be able to better understand chemical reactions involving catalysts, how biomass (plant material) can be used as a renewable fuel source, how melanin (which causes skin pigmentation) protects our bodies from the sun's rays, and damage to DNA.

"By better understanding how these processes operate at molecular level, scientists will be able to design new catalysts, better fuels, and more efficient drugs," Krylov said.

Hydrogen atoms are often shared between two molecules, forming a so-called hydrogen bond. This bond determines structures and properties of everything from liquid water to the DNA double helix and proteins.

Hydrogen bonds also serve as pathways by which protons may travel from one molecule to another, like a road between two houses. But what happens if there's no road?

To find out, Krylov and fellow corresponding author Ahmed Musahid of the Lawrence Berkeley National Lab created a system in which two molecules were stacked on top of each other, without hydrogen bonds between them. Then they ionized one of the molecules to coax a proton to move from one place to another.

Ahmed and Krylov discovered that when there's no straight road between the two houses, the houses (molecules) can rearrange themselves so that their front doors are close together. In that way, the proton can travel from one to the other with no hydrogen bond and with little energy. Then the molecules return to their original positions.

"We've come up with the picture of a new process," Krylov said.


'/>"/>

Contact: Robert Perkins
perkinsr@usc.edu
213-740-9226
University of Southern California
Source:Eurekalert

Related biology news :

1. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
2. Scientists identify novel inhibitor of human microRNA
3. Argonne scientists peer into heart of compound that may detect chemical, biological weapons
4. MU scientists go green with gold, distribute environmentally friendly nanoparticles
5. Scientists identify gene that may contribute to improved rice yield
6. Scientists discover why a mothers high-fat diet contributes to obesity in her children
7. MU scientists see how HIV matures into an infection
8. Earth scientists keep an eye on Texas
9. Thinking it through: Scientists call for policy to guide biofuels industry toward sustainability
10. Scientists identify a molecule that coordinates the movement of cells
11. Scientists Find new migratory patterns for Mediterranean and Western Atlantic bluefin tuna
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/12/2016)... WearablesResearch.com , a brand of Troubadour Research & ... Q1 wave of its quarterly wearables survey. A particular ... a program where they would receive discounts for sharing ... "We were surprised to see that so many ... CEO of Troubadour Research, "primarily because there are segments ...
(Date:4/28/2016)... FRANCISCO and BANGALORE, India , ... of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... provider, today announced a global partnership that will ... way to use mobile banking and payment services. ... is a key innovation area for financial services, but it ...
(Date:4/26/2016)... -- Research and Markets has announced the ...  report to their offering.  , ,     (Logo: ... forecast the global multimodal biometrics market to grow ... 2016-2020.  Multimodal biometrics is being implemented ... healthcare, BFSI, transportation, automotive, and government for controlling ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016  Sequenom, Inc. (NASDAQ: ... enabling healthier lives through the development of innovative products ... the United States denied its ... the claims of Sequenom,s U.S. Patent No. 6,258,540 (",540 ... criteria established by the Supreme Court,s Mayo Collaborative Services ...
(Date:6/27/2016)... PHILADELPHIA , June 27, 2016  Liquid ... today announced the funding of a Sponsored Research ... study circulating tumor cells (CTCs) from cancer patients.  ... changes in CTC levels correlate with clinical outcomes ... therapies. These data will then be employed to ...
(Date:6/24/2016)... ... ... Researchers at the Universita Politecnica delle Marche in Ancona combed medical journal articles ... findings are the subject of a new article on the Surviving Mesothelioma website. ... blood, lung fluid or tissue of mesothelioma patients that can help point doctors to ...
(Date:6/23/2016)... 2016 A person commits a crime, and the ... track the criminal down. An outbreak of foodborne ... Administration (FDA) uses DNA evidence to track down the bacteria ... far-fetched? It,s not. The FDA has increasingly used a complex, ... foodborne illnesses. Put as simply as possible, whole genome sequencing ...
Breaking Biology Technology: