Navigation Links
Scientists discover key step for regulating embryonic development
Date:4/22/2010

HOUSTON Deleting a gene in mouse embryos caused cardiac defects and early death, leading researchers to identify a mechanism that turns developmental genes off and on as an embryo matures, a team led by a scientist at The University of Texas M. D. Anderson Cancer Center reported today in Molecular Cell.

"Our study focused on regulation of two genes that are critical to the healthy development of the heart, but many other genes are regulated in this way," said senior author Edward T.H. Yeh, M.D., professor and chair of M. D. Anderson's Department of Cardiology. "This novel pathway marks an advance in our understanding of how developmental genes are turned on and off."

All cells in an embryo contain the same DNA. Different genes are turned off and on in different cells at different times to form specific tissues and organs as the embryo develops. This gene regulation is accomplished by epigenetic processes that control gene expression without altering DNA. Instead, epigenetic processes attach chemical groups to genes or to histones, proteins that are intertwined with DNA to form chromosomes, to activate genes or to shut them down.

"Our findings provide a new window through which to look at epigenetic control," Yeh said, "and how epigenetics and development are unexpectedly tied together by the SUMO/SENP2 system."

The key actors are members of two tightly associated families of proteins that Yeh and colleagues discovered and continue to study. The first, Small Ubiquitin-related Modifier, or SUMO, attaches to other proteins to modify their function or physically move them within the cell (SUMOylation). The second, Sentrin/SUMO-specific protease 2, or SENP2, snips SUMO off of proteins (de-SUMOylation).

This line of research started when Yeh and colleagues knocked SENP2 out of mouse DNA and found that the embryos died at about day 10. Their hearts had smaller chambers and thinner walls. Through a series of experiments, the team worked backward from this observation to show:

  1. A group of proteins called the polycomb repressive complex 1 (PRC1) that silences genes must first bind to a particular methylated address on a histone and,

  2. A key component of the complex must be SUMOylated to make this connection, which results in

  3. the silencing of Gata4 and Gata6, genes that are essential for cardiac development.

  4. In early development, SENP2 works as a switch to turn on Gata4 and Gata6

"When SENP2 is turned on, it peels SUMO off of PRC1, which then falls off the histone, and when that happens, the lock is removed and genes are transcribed," Yeh said. Gata4 and Gata6 are free to properly develop the heart.

In short, SUMO helps the PRC1 complex repress genes, and SENP2 reverses this repression, allowing gene transcription and expression.

"By understanding how development unfolds, we can better control this process, which includes cell proliferation and organ development," Yeh said. "This will help us to better understand cancer.

"SUMO and SENP are important in cancer development, neurological diseases and heart development. Everything under the sun can be regulated by this system," Yeh said. "Here we've established a new role for SUMOylation, mediating the interaction between protein and protein methylation in epigenetic regulation."


'/>"/>

Contact: Scott Merville
smerville@mdanderson.org
713-792-0661
University of Texas M. D. Anderson Cancer Center
Source:Eurekalert

Related biology news :

1. UK scientists working to help cut ID theft
2. Scientists show that mitochondrial DNA variants are linked to risk factors for type 2 diabetes
3. Comet probes reveal evidence of origin of life, scientists claim
4. Scientists link fragile X tremor/ataxia syndrome to binding protein in RNA
5. Male elephants get photo IDs from scientists
6. Scientists retrace evolution with first atomic structure of an ancient protein
7. Muscle mass: Scientists identify novel mode of transcriptional regulation during myogenesis
8. Carnegie Mellon scientists develop nanogels that enable controlled delivery of carbohydrate drugs
9. Clemson scientists shed light on molecules in living cells
10. Scientists tackle mystery mountain illness
11. T. rex quicker than Becks, say scientists
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... American College of Medical Genetics and Genomics was once again ... of the fastest-growing trade shows during the Fastest 50 Awards ... Las Vegas . Winners are ... of the following categories: net square feet of paid exhibit ... 2015 ACMG Annual Meeting was ranked 23 out of 50 ...
(Date:6/16/2016)... FRANCISCO , June 16, 2016 ... size is expected to reach USD 1.83 ... by Grand View Research, Inc. Technological proliferation and ... banking applications are expected to drive the market ... ) , The development of advanced ...
(Date:6/3/2016)... 3, 2016 Das ... Nepal hat ein 44 ... geprägter Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, ... Produktion und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte ... Januar teilgenommen, aber Decatur wurde als konformste ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016   Boston ... of novel compounds designed to target cancer stemness ... has been granted Orphan Drug Designation from the ... treatment of gastric cancer, including gastroesophageal junction (GEJ) ... inhibitor designed to inhibit cancer stemness pathways by ...
(Date:6/23/2016)... , June 23, 2016  The Prostate Cancer Foundation (PCF) is ... treatments and faster cures for prostate cancer. Members of the Class of 2016 ... countries. Read More About the Class of 2016 PCF ... ... ...
(Date:6/23/2016)... NC (PRWEB) , ... June 23, 2016 , ... In ... University Hospital in Denmark detail how a patient who developed lymphedema after being treated ... tissue. The results could change the paradigm for dealing with this debilitating, frequent side ...
(Date:6/23/2016)... ... June 23, 2016 , ... ClinCapture, the only free ... and will showcase its product’s latest features from June 26 to June 30, ... poster on Disrupting Clinical Trials in The Cloud during the conference. DIA ...
Breaking Biology Technology: