Navigation Links
Scientists discover how deadly fungal microbes enter host cells
Date:7/23/2010

A research team led by scientists at the Virginia Bioinformatics Institute (VBI) at Virginia Tech has discovered a fundamental entry mechanism that allows dangerous fungal microbes to infect plants and cause disease. The discovery paves the way for the development of new intervention strategies to protect plant, and even some animal cells, from deadly fungal infections. The findings are published in the July 23 edition of the journal Cell.

The researchers have revealed how special disease-related proteins, known as effectors, blaze a trail into cells. Fungi and fungal-like microbes known as oomycetes produce effector molecules that penetrate cells and switch off the host's defense system. Once the host's immune system has been disabled, the fungus or oomycete swiftly follows up, breaking and entering the cell and unleashing disease.

The pathogens in question, which include the microbe that caused the Irish potato famine in the nineteenth century, cause billions of dollars of losses for commercial farmers worldwide in crops such as soybean. They are also responsible for potentially fatal infectious diseases in humans.

Said Brett Tyler, professor at VBI and the leader of the project, "Our breakthrough finding is that these dangerous disease-causing proteins must bind a specific lipid molecule found on the cell surface before they can enter the cell."

In a previous study, Tyler and other researchers had pinpointed specific regions of the effector proteins that are intimately involved in breaking and entry of the cell. The new study shows that these regions on the effector proteins bind the lipid phosphatidylinositol 3-phosphate and that this binding is essential for the proteins to enter the cells. Adds Tyler, "The nasty proteins enter by hitching a ride on a lipid raft, a region of the cell's outer membrane that can be internalized by the cell. The lipid acts as a bridge between the effector protein and the raft, and in doing so help to unlock the door for entry of the disease-causing proteins into the cell."

Intriguingly, the researchers have also identified two methods to block the entry process that could lead to new disease interventions against infection in medicine and agriculture. Shiv Kale, a graduate student at VBI and one of the lead authors on the study, remarked: "We were able to block the entry process of the disease-related proteins using two types of inhibitors. The first group of inhibitors covers the lipid so that the pathogen cannot get access to it. The second jams the site on the protein that normally binds the lipid."

The scientists were also able to show that the entry process into some human cells takes place by the same mechanism. Said VBI Associate Professor Chris Lawrence, who collaborated on the study, "Our finding that the entry of the effectors into human cells can be blocked with small molecules suggest that it may be possible to find new strategies to combat several debilitating human diseases, in addition to treating plant diseases."


'/>"/>
Contact: Barry Whyte
whyte@vbi.vt.edu
540-231-1767
Virginia Tech
Source:Eurekalert

Related biology news :

1. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
2. Scientists identify novel inhibitor of human microRNA
3. Argonne scientists peer into heart of compound that may detect chemical, biological weapons
4. MU scientists go green with gold, distribute environmentally friendly nanoparticles
5. Scientists identify gene that may contribute to improved rice yield
6. Scientists discover why a mothers high-fat diet contributes to obesity in her children
7. MU scientists see how HIV matures into an infection
8. Earth scientists keep an eye on Texas
9. Thinking it through: Scientists call for policy to guide biofuels industry toward sustainability
10. Scientists identify a molecule that coordinates the movement of cells
11. Scientists Find new migratory patterns for Mediterranean and Western Atlantic bluefin tuna
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... 27, 2016 Research and Markets has announced ... report to their offering. ... to grow at a CAGR of 12.28% during the ... on an in-depth market analysis with inputs from industry experts. The ... coming years. The report also includes a discussion of the key ...
(Date:6/22/2016)... 22, 2016  The American College of Medical Genetics and ... Magazine as one of the fastest-growing trade shows during ... the Bellagio in Las Vegas . ... of growth in each of the following categories: net square ... number of attendees. The 2015 ACMG Annual Meeting was ranked ...
(Date:6/22/2016)... 2016   Acuant , the leading ... has partnered with RightCrowd ® to ... Management, Self-Service Kiosks and Continuous Workforce Assurance. ... functional enhancements to existing physical access control ... with an automated ID verification and authentication ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... 2016 , ... Parallel 6 , the leading software as a service ... Virtual Patient Encounter CONSULT module which enables both audio and video telemedicine communication ... , Using the CONSULT module, patients and physicians can schedule a face to face ...
(Date:6/27/2016)... 27, 2016  Liquid Biotech USA ... of a Sponsored Research Agreement with The University ... (CTCs) from cancer patients.  The funding will be ... correlate with clinical outcomes in cancer patients undergoing ... then be employed to support the design of ...
(Date:6/24/2016)... 2016 Epic Sciences unveiled a liquid ... to PARP inhibitors by targeting homologous recombination deficiency ... new test has already been incorporated into numerous ... types. Over 230 clinical trials are ... including PARP, ATM, ATR, DNA-PK and WEE-1. Drugs ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, ... second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical ... eBook by providing practical tips, tools, and strategies for clinical researchers. , “The ...
Breaking Biology Technology: