Navigation Links
Scientists discover how brain's auditory center transmits information for decisions, actions
Date:5/1/2013

Cold Spring Harbor, NY When a pedestrian hears the screech of a car's brakes, she has to decide whether, and if so, how, to move in response. Is the action taking place blocks away, or 20 feet to the left?

One of the truly primal mechanisms that we depend on every day of our lives -- acting on the basis of information gathered by our sense of hearing -- is yielding its secrets to modern neuroscience. A team of researchers from Cold Spring Harbor Laboratory (CSHL) today publishes experimental results in the journal Nature which they describe as surprising. The results fill in a key piece of the puzzle about how mammals act on the basis of sound cues.

It's well known that sounds detected by the ears wind up in a part of the brain called the auditory cortex, where they are translated transduced into information that scientists call representations. These representations, in turn, form the informational basis upon which other parts of the brain can make decisions and issue commands for specific actions.

What scientists have not understood is what happens between the auditory cortex and portions of the brain that ultimately issue commands, say, for muscles to move in response to the sound of that car's screeching brakes. To find out, CSHL Professor Anthony Zador and Dr. Petr Znamenskiy trained rats to listen to sounds and to make decisions based on those sounds. When a high-frequency sound is played, the animals are rewarded if they move to the left. When the sound is low-pitched, the reward is given if the animal moves right.

To the striatum

On the simplest level, says Zador, "we know that sound is coming into the ear; and we know what's coming out in the end a decision," in the form of a muscle movement. The surprise, he says, is the destination of the information used by the animal to perform this task of discriminating between sounds of high and low frequency, as revealed in his team's experiments.

"It turns out the information passes through a particular subset of neurons in the auditory cortex whose axons wind up in another part of the brain, called the striatum," says Zador. The classic series of experiments that provided inspiration and a model for this work, performed at Stanford University by William Newsome and colleagues, involved the visual system of primates, and had led Zador to expect by analogy that representations formed in the auditory cortex would lead to other locations within the cortex.

These experiments in rats have implications for how neural circuits make decisions, according to Zador. Even though many neurons in auditory cortex are "tuned" to low or high frequencies, most do not transmit their information directly to the striatum. Rather, their information is transmitted by a much smaller number of neurons in their vicinity, which convey their "votes" directly to the striatum.

"This is like the difference between a direct democracy and a representative democracy, of the type we have in the United States," Zador explains. "In a direct democracy model of how the auditory cortex conveys information to the rest of the brain, every neuron activated by a low- or high-pitched sound would have a 'vote.' Since there is noise in every perception, some minority of neurons will indicate 'low' when the sound is in fact 'high,' and vice-versa. In the direct democracy model, the information sent to the striatum for further action would be the equivalent of a simple sum of all these votes.

"In contrast and this is what we found to be the case the neurons registering 'high' and 'low' are represented by a specialized subset of neurons in their local area, which we might liken to members of Congress or the Electoral College: these in turn transmit the votes of the larger population to the place -- in this case the auditory striatum -- in which decisions are made and actions are taken."

"Corticostriatal neurones in auditory cortex drive decisions during auditory discrimination" appears online ahead of print in Nature on May 1, 2013. the authors are: Petr Znamenskiy and Anthony M. Zador. the paper can be obtained online at http://www.nature.com


'/>"/>

Contact: Peter Tarr
tarr@cshl.edu
516-367-8455
Cold Spring Harbor Laboratory
Source:Eurekalert

Related biology news :

1. Stanford scientists develop gene therapy approach to grow blood vessels in ischemic limbs
2. Queens scientists seek vaccine for Pseudomonas infection
3. Scientists produce eye structures from human blood-derived stem cells
4. American Society of Plant Biologists honors early career women scientists
5. Brandeis scientists win prestigious prize for circadian rhythms research
6. Scientists discover new method of proton transfer
7. Salk scientists open new window into how cancers override cellular growth controls
8. WileyChina.com - Now Featuring Bespoke Pages for China’s Life Scientists
9. Scientists win $2 million to study new pathway in development and maintenance of lymphoma
10. UGA scientists reveal genetic mutation depicted in van Goghs sunflower paintings
11. Genetic mutation depicted in van Goghs sunflower paintings revealed by scientists
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/21/2016)... June 21, 2016 NuData Security announced today ... role of principal product architect and that ... of customer development. Both will report directly to ... The moves reflect NuData,s strategic growth in its ... high customer demand and customer focus values. ...
(Date:6/16/2016)... 16, 2016 The global ... to reach USD 1.83 billion by 2024, according ... Inc. Technological proliferation and increasing demand in commercial ... to drive the market growth.      ... The development of advanced multimodal techniques for biometric ...
(Date:6/9/2016)...  Perkotek an innovation leader in attendance control systems is proud to announce the ... employers to make sure the right employees are actually signing in, and to even ... ... ... ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial ... Cary 5000 and the 6000i models are higher end machines that use the more ... the spectrophotometer’s light beam from the bottom of the cuvette holder. , FireflySci ...
(Date:6/23/2016)... June 23, 2016   Boston Biomedical , ... compounds designed to target cancer stemness pathways, announced ... granted Orphan Drug Designation from the U.S. Food ... gastric cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin ... to inhibit cancer stemness pathways by targeting STAT3, ...
(Date:6/23/2016)... ... 23, 2016 , ... Charm Sciences, Inc. is pleased to ... AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of the ... Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably ...
(Date:6/23/2016)... ... 23, 2016 , ... Supplyframe, the Industry Network for electronics ... Lab . Located in Pasadena, Calif., the Design Lab’s mission is to bring ... designed, built and brought to market. , The Design Lab is Supplyframe’s physical ...
Breaking Biology Technology: