Navigation Links
Scientists determine drug target for the most potent botulinum neurotoxin
Date:4/29/2008

UPTON, NY Botulinum neurotoxin responsible for the deadly food poisoning disease botulism and for the beneficial effects of smoothing out facial wrinkles can also be used as a dreaded biological weapon. When ingested or inhaled, less than a billionth of an ounce can cause muscle paralysis and eventual death. Although experimental vaccines administered prior to exposure can inhibit the destructive action of this neurotoxin the most deadly protein known to humans no effective pharmacological treatment exists.

Now, scientists at the U.S. Department of Energys Brookhaven National Laboratory and the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) have taken the first step toward designing an effective antidote to the most potent form of the toxin. They have found that they can trick the toxin to bypass its normal binding protein, thereby blocking its deadly action. The results of their research are reported in the April 22, 2008 online issue of the Journal of Biological Chemistry.

We have found a highly efficient inhibitor of botulinum neurotoxin type A the most potent of seven neurotoxins produced by the bacterium Clostridium botulinum. This finding can lead to a very effective drug to stop the devastating effects of the toxin, said Brookhaven Lab biologist Subramanyam Swaminathan, the studys co-principal investigator. We intend to do further research to tailor the inhibitor for the best results.

We are excited about the success of this work and the prospects it holds for future drug development, said USAMRIID principal investigator S. Ashraf Ahmed, who initiated the structure-based inhibitor design as part of the Institutes bio-defense research program.

To cause its deadly effects, the botulinum neurotoxin first binds to a nerve cell membrane, which curves inward, incorporating the toxin into a vesicle that drifts inside the cell. The toxin eventually travels from the vesicle to the cytosol, the internal fluid of the cell. The toxin then cleaves specific proteins in the cytosol, thereby blocking the release of neurotransmitters chemicals nerve cells use to communicate with one another and with muscles. Blockage of this communication paralyzes muscles including those that enable breathing.

To block the toxins action, the researchers designed four decoy protein fragments that mimic the structure of the protein to which the toxin ordinarily binds. The toxin then attaches itself to the decoy fragments instead of to the cells protein. This re-routing of the toxin allows neurotransmitters to keep functioning, thus stopping the toxins pathological effects.

The scientists used x-ray techniques at Brookhavens National Synchrotron Light Source (NSLS) to see how the toxin binds to the protein inhibitors. They found that all four decoy proteins are efficient at inhibiting the toxins binding to the cells protein, but one of them in particular is by far the best of any known inhibitors. The scientists next step in this process is to transform the most effective of the four protein fragments into a drug-like molecule before clinical testing is done.

This study represents an impressive collaboration in identifying potential inhibitors of the toxin for therapeutic use, said Colonel George W. Korch, Jr., USAMRIIDs commander. It builds upon the successes we have realized in developing effective next-generation vaccines to protect our citizens against the toxins deadly effects prior to exposure.

The scientists did not work with intact Clostridium botulinum bacteria. Instead, they produced a functional fragment of the neurotoxin protein, which is not toxic. The research is performed in strict compliance with Brookhavens Institutional Biosafety Committee regulations according to standards set by the U.S. Centers for Disease Control and Prevention. Only authorized scientists have access to the laboratory.


'/>"/>

Contact: Diane Greenberg
greenb@bnl.gov
631-344-2347
DOE/Brookhaven National Laboratory
Source:Eurekalert

Related biology news :

1. Scientists make chemical cousin of DNA for use as new nanotechnology building block
2. Scientists find stem cells for the first time in the pituitary
3. Brown scientists say biodiversity is crucial to ecosystem productivity
4. Scientists urged to make a stand on climate change
5. Scientists clarify a mechanism of epigenetic inheritance
6. Scientists to explore global change-public health connection
7. Scientists test device to track medication adherence in patients with HIV/AIDS
8. Scientists discover how nanocluster contaminants increase risk of spreading
9. Smithsonian scientists find evidence that could rewrite Hawaiis botanical history
10. Argonne scientists develop techniques for creating molecular movies
11. Scientists debate the accuracy of Al Gores documentary An Inconvenient Truth
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... and LONDON , April ... part of EdgeVerve Systems, a product subsidiary of ... today announced a partnership to integrate the Onegini ...      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ) ... their customers enhanced security to access and transact ...
(Date:4/14/2016)... , April 14, 2016 ... Malware Detection, today announced the appointment of Eyal ... new role. Goldwerger,s leadership appointment comes at ... heels of the deployment of its platform at several ... biometric technology, which discerns unique cognitive and physiological factors, ...
(Date:3/23/2016)... March 23, 2016 ... Sicherheit Gesichts- und Stimmerkennung mit Passwörtern ... (NASDAQ: MESG ), ein führender Anbieter ... Unternehmen mit SpeechPro zusammenarbeitet, um erstmals dessen ... wird die Möglichkeit angeboten, im Rahmen mobiler ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Rolf K. ... the faculty of the University of North Carolina Kenan-Flagler Business School ... entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international efforts, leading ...
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/23/2016)... ... June 23, 2016 , ... UAS LifeSciences, one of the ... brand, UP4™ Probiotics, into Target stores nationwide. The company, which has been manufacturing ... to its list of well-respected retailers. This list includes such fine stores as ...
(Date:6/23/2016)... HOUSTON , June 23, 2016 ... agreement with the Cy-Fair Sports Association to serve ... of the agreement, Houston Methodist Willowbrook will provide ... education and connectivity with association coaches, volunteers, athletes ... partner with the Cy-Fair Sports Association and to ...
Breaking Biology Technology: