Navigation Links
Scientists decode genome of painted turtle, revealing clues to extraordinary adaptations

Humans could learn a thing or two from turtles, and scientists who have just sequenced the first turtle genome uncovered clues about how people can benefit from the shelled creatures' remarkable longevity and ability to survive for months without breathing.

Understanding the natural mechanisms turtles use to protect their heart and brain from oxygen deprivation may one day improve treatments for heart attack and stroke, the researchers said.

UCLA conservation biologist and lead author Brad Shaffer collaborated with the Genome Institute at Washington University in St. Louis and 58 co-authors on the multi-year research project. Their paper, which appears in the journal Genome Biology, describes the genome of the western painted turtle, one of the most widespread and well-studied turtles in the world.

Researchers were somewhat surprised to find that the painted turtle's extraordinary adaptations were not the result of previously unknown genes but of gene networks that are common in vertebrates including humans, said Shaffer, a professor at UCLA's Institute of the Environment and Sustainability (IoES) and UCLA's Department of Ecology and Evolutionary Biology.

"They're the same genes we have, and the turtles are just using them in different ways and really cranking up their activity in most cases," said Shaffer, who also directs the La Kretz Center for California Conservation Science at the IoES.

"Given how extreme their adaptations are, I imagined we would see weird new genes, so I was surprised," he added. "But the fact that they're common means they may have direct relevance to human health conditions, especially those related to oxygen deprivation, hypothermia and possibly longevity."

Inside the turtle genome, the researchers found 19 genes in the brain and 23 in the heart that became more active in low-oxygen conditions, including one that became 130 times more active. These genes, all of which are present in humans, may be important candidates for exploring oxygen-deprivation treatment in humans, the researchers noted.

Many of the extreme adaptations the researchers studied, such as the ability to survive months of anoxia total oxygen depletion are primarily seen in painted turtles, and the western painted turtle is the most anoxia-tolerant terrestrial vertebrate known. At low temperatures, such as in the ice-covered ponds where they hibernate, painted turtles can survive for four months underwater without coming up for air. Turtles are also famous for their extreme longevity, with some species even continuing to reproduce into their second century of life.

But when the research team examined genes that may be responsible for turtles' longevity, instead of finding super-active genes like the ones protecting them from oxygen deprivation, the scientists found indications that turtles' long life spans may come from silencing "life-shortening" genes.

"We looked at two genes that are either absent or severely down-regulated in other animals that live a long time," Shaffer said. "We found turtles have only non-functioning vestiges of these genes, if they have them at all. Both of these genes are present and active in humans, so they're an appealing candidate to learn about human longevity."

Analysis of the turtle genome confirmed that the shelled creatures are more closely related to birds and crocodilians than any other vertebrates. The researchers also discovered that turtles have an extraordinarily slow rate of genomic evolution and that the turtle genome evolves at about a third the rate of the human genome.

One aspect of turtle evolution that is progressing rapidly, however, is the threat of extinction. More than half of the 330 turtle species worldwide are considered threatened, making them the most endangered major group of vertebrates. Their demise is largely due to humans, partly the result of human-caused habitat loss and modification. But it is their popularity on restaurant menus and dinner tables, particularly in Asia, that is the biggest reason for the global decline, Shaffer said.

"The challenge is to preserve the rich diversity of living turtles that still exist as we continue to unravel their secrets for success," Shaffer said. "Turtles have a tremendous amount to tell us about evolution and human health, but their time is running out unless we act to protect them."


Contact: Alison Hewitt
University of California - Los Angeles

Related biology news :

1. 8 M € from EU to enhance access by scientists to the largest European biobanks
2. CSHL neuroscientists show jumping genes may contribute to aging-related brain defects
3. NYSCF scientists develop new protocol to ready induced pluripotent stem cell clinical application
4. Scientists find government justification of new environmental policy unfounded
5. NYSCF scientists develop 3-D stem cell culture technique to better understand Alzheimers disease
6. UGA discovery may allow scientists to make fuel from CO2 in the atmosphere
7. UT MD Anderson scientists uncover the nuclear life of actin
8. Scientists awarded £3M to study the way Northwest European seas absorb carbon
9. Scientists reveal quirky feature of Lyme disease bacteria
10. Scientists create new tools for battling secondhand smoke
11. Academy scientists receive top honors for long-term research and training initiatives in Mongolia
Post Your Comments:
(Date:11/17/2015)... PARIS , November 17, 2015 ... November 2015.   --> Paris from ... --> DERMALOG, the biometrics innovation leader, has invented the ... and fingerprints on the same scanning surface. Until now two ... fingerprints. Now one scanner can capture both on the same ...
(Date:11/17/2015)... EASTON, Mass. , Nov. 17, 2015 ... a leader in the development and sale of broadly ... the worldwide life sciences industry, today announced it has ... of its $5 million Private Placement (the "Offering"), increasing ... to $4,025,000.  One or more additional closings are expected ...
(Date:11/12/2015)... Mass. , Nov. 12, 2015  Arxspan ... Institute of MIT and Harvard for use of ... discovery information management tools. The partnership will support ... both biological and chemical research information internally and ... will be used for managing the Institute,s electronic ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... , Nov. 25, 2015  PharmAthene, Inc. (NYSE ... has adopted a stockholder rights plan (Rights Plan) in ... operating loss carryforwards (NOLs) under Section 382 of the ... --> PharmAthene,s use of its NOLs could ... change" as defined in Section 382 of the Code. ...
(Date:11/25/2015)... 25, 2015 Studies reveal the ... plaque and pave the way for more effective treatment for ...     --> --> ... health problems in cats, yet relatively little was understood about ... studies have been conducted by researchers from the WALTHAM Centre ...
(Date:11/25/2015)... , Nov. 25, 2015  Neurocrine Biosciences, Inc. (Nasdaq: ... , President and CEO of Neurocrine Biosciences, will be ... in New York . ... the website approximately 5 minutes prior to the presentation ... of the presentation will be available on the website ...
(Date:11/25/2015)... ... November 25, 2015 , ... A long-standing ... Aerospace Professionals (OPBAP) has been formalized with the signing of a Memorandum of ... with OPBAP leaders Capt. Karl Minter and Capt. Albert Glenn Tuesday, November 24, ...
Breaking Biology Technology: