Navigation Links
Scientists decipher mechanism behind antimicrobial 'hole punchers'
Date:9/20/2007

CHAMPAIGN, Ill. In the battle against bacteria, researchers have scored a direct hit. They have made a discovery that could shorten the road to new and more potent antibiotics.

The rapid development of bacterial resistance to conventional antibiotics (such as penicillin or vancomycin) has become a major public health concern. Because resistant strains of bacteria can arise faster than drug companies can create antibiotics, understanding how these molecules function could help companies narrow their focus on potential antibiotics and bring them to market sooner.

As reported in a paper accepted for publication in the Journal of the American Chemical Society and posted on its Web site, researchers have now deciphered the molecular mechanism behind selective antimicrobial activity for a prototypical class of synthetic compounds.

The compounds, which mimic antimicrobial peptides found in biological immune systems, function as molecular hole punchers, punching holes in the membranes of bacteria, said Gerard Wong, a professor of materials science and engineering, physics, and bioengineering at the U. of I., and a corresponding author of the paper. Its a little like shooting them with a hail of nanometer-sized bullets the perforated membranes leak and the bacteria consequently die.

The researchers also determined why some compounds punch holes only in bacteria, while others kill everything within reach, including human cells.

We can use this as a kind of Rosetta stone to decipher the mechanisms of much more complicated antimicrobial molecules, said Wong, who also is a researcher at the universitys Beckman Institute.

If we can understand the design rules of how these molecules work, then we can assemble an arsenal of killer molecules with small variations, and no longer worry about antimicrobial resistance.

In a collaboration between the U. of I. and the University of Massachusetts at Amherst, the researchers first synthesized a prototypical class of antimicrobial compounds, then used synchrotron small-angle X-ray scattering to examine the structures made by the synthetic compounds and cell membranes.

Composed of variously shaped lipids, including some that resemble traffic cones, the cell membrane regulates the passage of materials in and out of the cell. In the presence of the researchers antimicrobial molecules, the cone-shaped lipids gather together and curl into barrel-shaped openings that puncture the membrane. Cell death soon follows.

The effectiveness of an antimicrobial molecule depends on both the concentration of cone-shaped lipids in the cell membrane, and on the shape of the antimicrobial molecule, Wong said. For example, by slightly changing their synthetic molecules length, the researchers created antimicrobial molecules that would either kill nothing, kill only bacteria, or kill everything within reach.

By understanding how these molecules kill bacteria, and how we can prevent them from harming human cells, we can provide a more direct and rational route for the design of future antibiotics, Wong said.


'/>"/>

Contact: James E. Kloeppel
kloeppel@uiuc.edu
217-244-1073
University of Illinois at Urbana-Champaign
Source:Eurekalert

Related biology news :

1. Wisconsin scientists grow critical nerve cells
2. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
3. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
4. UAB scientists discover the origin of a mysterious physical force
5. Fox Chase Cancer Center scientists identify immune-system mutation
6. Scientists Replicate Hepatitis C Virus in Laboratory
7. Scientists detect probable genetic cause of some Parkinsons disease cases
8. Scientists find missing enzyme for tuberculosis iron scavenging pathway
9. Scientists seek answers on what activates deadly anthrax spores
10. Yale Scientists Find MicroRNA Regulates Ras Cancer Gene
11. Scientists collaborate to assess health of global environment
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2016)...   EyeLock LLC , a market leader of ... an IoT Center of Excellence in Austin, ... of embedded iris biometric applications. EyeLock,s iris ... security with unmatched biometric accuracy, making it the most ... EyeLock,s platform uses video technology to deliver a fast ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a provider ... MegaMatcher Automated Biometric Identification System (ABIS) , ... multi-biometric projects. MegaMatcher ABIS can process multiple complex ... any combination of fingerprint, face or iris biometrics. ... SDK and MegaMatcher Accelerator , which ...
(Date:4/26/2016)... and LONDON , April ... part of EdgeVerve Systems, a product subsidiary of ... today announced a partnership to integrate the Onegini ...      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ) ... their customers enhanced security to access and transact ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... June 22, 2016  Amgen (NASDAQ: AMGN ... QB3@953 life sciences incubator to accelerate the ... shared laboratory space at QB3@953 was created to help ... obstacle for many early stage organizations - access to ... sponsorship, Amgen launched two "Amgen Golden Ticket" awards, providing ...
(Date:6/22/2016)... , June 22, 2016 Research and ... Global Markets" report to their offering. ... billion in 2014 from $29.3 billion in 2013. The market is ... of 13.8% from 2015 to 2020, increasing from $50.6 billion in ... projected product forecasts during the forecast period (2015 to 2020) are ...
(Date:6/22/2016)... ... June 22, 2016 , ... Quantitative Radiology Solutions, ... and current participant in the Phase 1 Ventures program, is leveraging regional and ... Quantitative Radiology Solutions helps physicians make better treatment decisions by quantifying medical imaging ...
(Date:6/22/2016)... ... 22, 2016 , ... The Immigrant Journey Awards , ... to North Texas and the nation, recently held its annual luncheon program. ... civic and economic vitality of North Texas. Proceeds from the event are used ...
Breaking Biology Technology: