Navigation Links
Scientists decipher mechanism behind antimicrobial 'hole punchers'
Date:9/20/2007

CHAMPAIGN, Ill. In the battle against bacteria, researchers have scored a direct hit. They have made a discovery that could shorten the road to new and more potent antibiotics.

The rapid development of bacterial resistance to conventional antibiotics (such as penicillin or vancomycin) has become a major public health concern. Because resistant strains of bacteria can arise faster than drug companies can create antibiotics, understanding how these molecules function could help companies narrow their focus on potential antibiotics and bring them to market sooner.

As reported in a paper accepted for publication in the Journal of the American Chemical Society and posted on its Web site, researchers have now deciphered the molecular mechanism behind selective antimicrobial activity for a prototypical class of synthetic compounds.

The compounds, which mimic antimicrobial peptides found in biological immune systems, function as molecular hole punchers, punching holes in the membranes of bacteria, said Gerard Wong, a professor of materials science and engineering, physics, and bioengineering at the U. of I., and a corresponding author of the paper. Its a little like shooting them with a hail of nanometer-sized bullets the perforated membranes leak and the bacteria consequently die.

The researchers also determined why some compounds punch holes only in bacteria, while others kill everything within reach, including human cells.

We can use this as a kind of Rosetta stone to decipher the mechanisms of much more complicated antimicrobial molecules, said Wong, who also is a researcher at the universitys Beckman Institute.

If we can understand the design rules of how these molecules work, then we can assemble an arsenal of killer molecules with small variations, and no longer worry about antimicrobial resistance.

In a collaboration between the U. of I. and the University of Massachusetts at Amherst, the researchers first synthesized a prototypical class of antimicrobial compounds, then used synchrotron small-angle X-ray scattering to examine the structures made by the synthetic compounds and cell membranes.

Composed of variously shaped lipids, including some that resemble traffic cones, the cell membrane regulates the passage of materials in and out of the cell. In the presence of the researchers antimicrobial molecules, the cone-shaped lipids gather together and curl into barrel-shaped openings that puncture the membrane. Cell death soon follows.

The effectiveness of an antimicrobial molecule depends on both the concentration of cone-shaped lipids in the cell membrane, and on the shape of the antimicrobial molecule, Wong said. For example, by slightly changing their synthetic molecules length, the researchers created antimicrobial molecules that would either kill nothing, kill only bacteria, or kill everything within reach.

By understanding how these molecules kill bacteria, and how we can prevent them from harming human cells, we can provide a more direct and rational route for the design of future antibiotics, Wong said.


'/>"/>

Contact: James E. Kloeppel
kloeppel@uiuc.edu
217-244-1073
University of Illinois at Urbana-Champaign
Source:Eurekalert

Related biology news :

1. Wisconsin scientists grow critical nerve cells
2. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
3. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
4. UAB scientists discover the origin of a mysterious physical force
5. Fox Chase Cancer Center scientists identify immune-system mutation
6. Scientists Replicate Hepatitis C Virus in Laboratory
7. Scientists detect probable genetic cause of some Parkinsons disease cases
8. Scientists find missing enzyme for tuberculosis iron scavenging pathway
9. Scientists seek answers on what activates deadly anthrax spores
10. Yale Scientists Find MicroRNA Regulates Ras Cancer Gene
11. Scientists collaborate to assess health of global environment
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... , April 11, 2017 NXT-ID, Inc. ... technology company, announces the appointment of independent Directors Mr. ... to its Board of Directors, furthering the company,s corporate governance ... Gino ... we look forward to their guidance and benefiting from their ...
(Date:4/4/2017)...   EyeLock LLC , a leader of iris-based ... Patent and Trademark Office (USPTO) has issued U.S. Patent ... an iris image with a face image acquired in ... 45 th issued patent. "The ... the multi-modal biometric capabilities that have recently come to ...
(Date:3/29/2017)...  higi, the health IT company that operates the ... , today announced a Series B investment from ... The new investment and acquisition accelerates higi,s strategy to ... population health activities through the collection and workflow integration ... collects and secures data today on behalf of over ...
Breaking Biology News(10 mins):
(Date:4/19/2017)... ... ... A number of new instruments have recently emerged to accommodate different applications ... and Cell Analysis Education Webinar Series , will focus on advances in the Invitrogen™ ... applications. , Many flow cytometers have unique capabilities and the Attune NxT Flow ...
(Date:4/19/2017)... (PRWEB) , ... April 18, 2017 , ... ... Halo Labs . The move comes after the company changed focus to ... market, our new brand and our new technology,” says CEO Robert Hart. Founders ...
(Date:4/19/2017)... ... April 19, 2017 , ... ThermaGenix, the PCR Improvement Company, ... to several other early achievements at ThermaGenix, including the business formation and licensing ... ThermaGenix will use proceeds from the Series A-1 round to:, ...
(Date:4/19/2017)... ... April 19, 2017 , ... ... which makes educational webinars accessible to novices as well as experienced users, attendees ... of commonly performed coagulation screening tests. , Hemostasis testing quality is determined ...
Breaking Biology Technology: