Navigation Links
Scientists closer to grasping how the brain's 'hearing center' spurs responses to sound
Date:10/18/2010

Cold Spring Harbor, N.Y. Just as we visually map a room by spatially identifying the objects in it, we map our aural world based on the frequencies of sounds. The neurons within the brain's "hearing center"the auditory cortexare organized into modules that each respond to sounds within a specific frequency band. But how responses actually emanate from this complex network of neurons is still a mystery.

A team of scientists led by Anthony Zador, M.D., Ph.D., Professor and Chair of the Neuroscience program at Cold Spring Harbor Laboratory (CSHL) has come a step closer to unraveling this puzzle. The scientists probed how the functional connectivity among neurons within the auditory cortex gives rise to a "map" of acoustic space.

"What we learned from this approach has put us in a position to investigate and understand how sound responsiveness arises from the underlying circuitry of the auditory cortex," says Zador. His team's findings appear online, ahead of print, on October 17th in Nature Neuroscience.

Neuronal organization within the auditory cortex fundamentally differs from the organization within brain regions that process sensory inputs such as sight and sensation. For instance, the relative spatial arrangement of sight receptors in the retina (the eyes' light-sensitive inner surface) is directly represented as a two-dimensional "retinotopic" map in the brain's visual cortex.

In the auditory system, however, the organization of sound receptors in the cochlea the snail-like structure in the ear is one-dimensional. Cochlear receptors near the outer edge recognize low-frequency sounds whereas those whereas those near the inside of the cochlea are tuned to higher frequencies. This low-to-high distribution, called 'tonotopy,' is preserved along one dimension in the auditory cortex, with neurons tuned to high and low frequencies arranged in a head-to-tail gradient.

"Because sound is intrinsically a one-dimensional signal, unlike signals for other senses such as sight and sensation which are intrinsically two-dimensional, the map of sound in the auditory cortex is also intrinsically one-dimensional," explains Zador. "This means that there is a functional difference in the cortical map between the low-to-high direction and the direction perpendicular to it. However, no one has been able understand how that difference arises from the underlying neuronal circuitry."

To address this question, Zador and postdoctoral fellow Hysell Oviedo compared neuronal activity in mouse brain slices that were cut to preserve the connectivity along the tonotopic axis vs. activity in slices that were cut perpendicular to it.

To precisely stimulate a single neuron within a slice and record from it, Oviedo and Zador, working in collaboration with former CSHL scientists Karel Svoboda and Ingrid Bureau, used a powerful tool called laser-scanning photostimulation. This method allows the construction of a detailed, high-resolution picture that reveals the position, strength and the number of inputs converging on a single neuron within a slice.

"If you did this experiment in the visual cortex, you would see that the connectivity is the same regardless of which way you cut the slice," explains Oviedo. "But in our experiments in the auditory cortex slices, we found that there was a qualitative difference in the connectivity between slices cut along the tonotopic axis vs. those cut perpendicular to it."

There was an even more striking divergence from the visual cortexand presumably the other cortical regions. As demonstrated by a Nobel Prize-winning discovery in 1962, in the visual cortex, the neurons that share the same input source (or respond to the same signal) are organized into columns. As Oviedo puts it, "all neurons within a column in the vertical cortex are tuned to the same position in space and are more likely to communicate with other neurons from within the same column."

Analogously, in the auditory cortex, neurons within a column are expected to be tuned to the same frequency. So the scientists were especially surprised to find that for a given neuron in this region, the dominant input signal didn't come from within its column but from outside it.

"It comes from neurons that we think are tuned to higher frequencies," elaborates Zador. "This is the first example of the neuronal organizing principle not following the columnar pattern, but rather an out-of-column pattern." Discovering this unexpected, out-of-column source of information for a neuron in the auditory complex adds a new twist to their research, which is focused on understanding auditory function in terms of the underlying circuitry and how this is altered in disorders such as autism.

"With this study, we've moved beyond having only a conceptual notion of the functional difference between the two axes by actually finding correlates for this difference at the level of the neuronal microcircuits in this region," he explains.


'/>"/>

Contact: Hema Bashyam
bashyam@cshl.edu
516-367-6822
Cold Spring Harbor Laboratory
Source:Eurekalert

Related biology news :

1. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
2. Scientists identify novel inhibitor of human microRNA
3. Argonne scientists peer into heart of compound that may detect chemical, biological weapons
4. MU scientists go green with gold, distribute environmentally friendly nanoparticles
5. Scientists identify gene that may contribute to improved rice yield
6. Scientists discover why a mothers high-fat diet contributes to obesity in her children
7. MU scientists see how HIV matures into an infection
8. Earth scientists keep an eye on Texas
9. Thinking it through: Scientists call for policy to guide biofuels industry toward sustainability
10. Scientists identify a molecule that coordinates the movement of cells
11. Scientists Find new migratory patterns for Mediterranean and Western Atlantic bluefin tuna
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/30/2016)... , Nov. 30, 2016 Not many of us realize that we ... of recovery so we need to do it well. Inadequate sleep levels have been ... blood pressure, stroke, diabetes, and even cancer. Maybe now is the best ... that could help them to manage their sleep quality? ... ...
(Date:11/29/2016)... , Nov. 29, 2016   ... identification and object recognition technologies, today released ... for fingerprint recognition solutions that run on ... fingerprint template using less than 128KB of ... compact devices that have limited on-board resources, ...
(Date:11/24/2016)... Cercacor today introduced Ember TM Sport ... non-invasively measure hemoglobin, Oxygen Content, Oxygen Saturation, Perfusion ... in approximately 30 seconds. Smaller than a smartphone, using ... to key data about their bodies to help monitor ... Hemoglobin carries oxygen to muscles. When hemoglobin ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... CytRx Corporation (NASDAQ: CYTR ), ... today announced the appointment of Earl Warren Brien ... private healthcare investor, to its Board of Directors. ... and strategic experience at the highest level," said ... one of the world,s leading orthopedic surgeons, Dr. Brien ...
(Date:12/2/2016)... ... December 01, 2016 , ... ... the value of DNA microarray comparative genomic hybridization (array CGH) for HER2 ... Cancer Symposium. Using molecular test results from tumors with previously documented positive, ...
(Date:12/2/2016)... ... , ... The Conference Forum has announced that the 3rd annual Immuno-Oncology ... February 1-3, 2017 at the Roosevelt Hotel in New York City. Led by advisors ... 360-degree approach, which addresses the most up-to-date information regarding business aspects, clinical advancements and ...
(Date:12/2/2016)... , ... December 02, 2016 ... ... a consortium of pharmaceutical and biotechnology companies dedicated to collaboratively developing improved ... interested in supplying a vendor-supported, portable online UHPLC, with robust, probe-based sampling. ...
Breaking Biology Technology: