Navigation Links
Scientists build 'roach motel' for nasty bugs of the bacterial variety
Date:11/24/2008

GAINESVILLE, Fla. The vacancy sign is on, but the lowlifes who check in never check out.

Scientists at the University of Florida and the University of New Mexico have created tiny microscopic spheres that trap and kill harmful bacteria in a manner the scientists liken to "roach motels" snaring and killing cockroaches. The research could lead to new coatings that will disinfect common surfaces, combat bioterrorism or sterilize medical devices, reducing the devices' responsibility for an estimated 1.4 million infection-related deaths each year.

"The bacteria get in there, they get stuck, and then they get killed," said Kirk Schanze, a UF professor of chemistry and one of eight authors of the paper. Schanze and his fellow researchers describe the findings in a paper set to be published today in the debut issue of the American Chemical Society journal ACS Applied Materials & Interfaces.

The spheres are far from the only such "biocide" on the market or under development, Schanze said, but they are unique in their materials and booby-trap action. That could prove important as bacteria evolve to become increasingly resistant to standard disinfectants.

"The first novelty is the material we are using these conducting polymers," Schanze said. "The second novelty is the roach motel concept."

The coatings imbued with the spheres could potentially be applied to doorknobs or other surfaces where bacterial diseases are often transferred, Schanze said.

Schanze, David Whitten, a professor of chemical engineering and associate director of University of New Mexico Center for Biomedical Engineering, and collaborating faculty and graduate students developed the tiny traps based on electricity-conducting polymers Schanze and Whitten have worked on for the past decade.

The polymers have a unique trait: When they are exposed to light, they produce singlet oxygen, in Schanze's words a "very reactive form of oxygen" that is highly toxic to bacteria much like bleach or other potent sterilizers.

On the researchers' hunch the polymers could be used to keep surfaces cleansed, UF doctoral student Jonathan Sommer developed a method to shape them into microscopic spheres ranging in size from 1 to 5 microns, or 1- to 5-millionths of a meter.

Thomas Corbitt, a UNM doctoral student, and co-workers tested the spheres at the University of New Mexico, using a relatively safe bacteria that is closely related to Pseudomonas aeruginosa, a common, persistent and lethal bacteria in hospitals. Often introduced via contaminated medical devices, that bacterium sickens or kills patients suffering from burns, cancer, AIDS other serious conditions. The strain the researchers used was Pseudomonas aeruginosa PAO1, which is a close cousin but poses little health threat.

While Schanze said further tests are needed to nail down the spheres' potency, initial experiments revealed they wiped out more than 95 percent of nearby PAO1 bacteria after exposure to light for about an hour.


'/>"/>

Contact: Kirk Schanze
kschanze@chem.ufl.edu
352-392-9133
University of Florida
Source:Eurekalert

Related biology news :

1. Scripps Research scientists shed light on how DNA is unwound so that its code can be read
2. Scientists present moving theory behind bacterial decision-making
3. Penn scientists discover cells reorganize shape to fit the situation
4. Scientists discover 21st century plague
5. Bipolar disorder genes, pathways identified by Indiana University neuroscientists
6. Scripps research scientists identify blood component that turns bacteria virulent
7. Barrow scientists solve 200-year-old scientific debate involving visual illusions
8. Scientists find facial scars increase attractiveness
9. Chicks to give scientists clearer picture of fetal development
10. NYU biologist Bonneau named among 20 "visionary" scientists under 40 by Discover magazine
11. Scientists announce major progress towards historic Census of Marine Life in 2010
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/8/2017)... 2017 Report Highlights The global ... $8.3 billion in 2016 at a compound annual growth ... Report Includes - An overview of the global market ... data from 2015 and 2016, and projections of compound ... the market on the basis of product type, source, ...
(Date:2/7/2017)... BEACH, New York , February 7, 2017 /PRNewswire/ ... known as ID Global Solutions Corporation [OTC: IDGS], ("Ipsidy" ... identity management and electronic transaction processing services, is pleased ... reorganization of the Company. Effective January 31, ... of the Board of Directors, CEO and President.  An ...
(Date:2/3/2017)... A new independent identity strategy consultancy firm ... . Designed to fill a critical niche in technical ... partners Mark Crego and Janice Kephart ... identity expertise that span federal governments, the 9/11 Commission, ... combined expertise has a common theme born from a ...
Breaking Biology News(10 mins):
(Date:2/23/2017)... 23, 2017 /PRNewswire/ - The Fight Against Cancer Innovation ... (OICR) are pleased to report that Fusion Pharmaceuticals Inc. ... Johnson & Johnson Innovation – JJDC, Inc. (JJDC) as ... HealthCap, TPG Biotechnology Partners, and Genesys Capital, as well ... ...
(Date:2/23/2017)... , Feb. 23, 2017  Imanis Life ... product line of oncolytic vaccinia viruses for virotherapy ... as part of Genelux,s proprietary, vaccinia virus-based technology ... excited to enter into a partnership with Genelux ... oncolytic vaccinia viruses for use in research," said ...
(Date:2/23/2017)... ... , ... Today, researchers can fast-track sample collection and analysis ... biomarkers or SNPs of interest) using one, easy-to-collect saliva sample. With the addition ... insulin and other relevant biomarkers can be extensively studied through a non-invasive sample ...
(Date:2/23/2017)... SAN FRANCISCO , Feb. 23, 2017 /PRNewswire/ ... and Beyond Type 1, a not-for-profit advocacy and education ... announced a grant from Beyond Type 1 to support ... 1 and other insulin-requiring diabetes.  For ... stem cell-derived cell replacement therapies with a focus on ...
Breaking Biology Technology: