Navigation Links
Scientist IDs genes that promise to make biofuel production more efficient, economical
Date:8/19/2010

URBANA A University of Illinois metabolic engineer has taken the first step toward the more efficient and economical production of biofuels by developing a strain of yeast with increased alcohol tolerance.

Biofuels are produced through microbial fermentation of biomass crops, which yield the alcohol-based fuels ethanol and iso-butanol if yeast is used as the microbe to convert sugars from biomass into biofuels.

"However, at a certain concentration, the biofuels that are being created become toxic to the yeast used in making them. Our goal was to find a gene or genes that reduce this toxic effect," said Yong-Su Jin, an assistant professor of microbial genomics in the U of I Department of Food Science and Human Nutrition and a faculty member in the U of I's Institute for Genomic Biology.

Jin worked with Saccharomyces cerevisiae, the microbe most often used in making ethanol, to identify four genes (MSN2, DOG1, HAL1, and INO1) that improve tolerance to ethanol and iso-butanol when they are overexpressed.

"We expect these genes will serve as key components of a genetic toolbox for breeding yeast with high ethanol tolerance for efficient ethanol fermentation," he said.

To assess the overexpressed genes' contribution to the components that have limited biofuel production, the scientists tested them in the presence of high concentrations of glucose (10%), ethanol (5%), and iso-butanol (1%) and compared their performance to a control strain of S. cerevisiae.

Overexpression of any of the four genes remarkably increased ethanol tolerance, but the strain in which INO1 was overexpressed elicited the highest ethanol yield and productivitywith increases of more than 70 percent for ethanol volume and more than 340 percent for ethanol tolerance when compared to the control strain.

According to Jin, the functions of the identified genes are very diverse and unrelated, which suggests that tolerance to high concentrations of iso-butanol and ethanol might involve the complex interactions of many genetic elements in yeast.

"For example, some genes increase cellular viability at the expense of fermentation. Others are more balanced between these two functions," he said.

"Identification of these genes should enable us to produce transportation fuels from biomass more economically and efficiently. It's a first step in understanding the cellular reaction that currently limits the production process," he said.

Further study of these genes should increase alcohol tolerance even further, and that will translate into cost savings and greater efficiency during biofuel production, he added.


'/>"/>

Contact: Phyllis Picklesimer
p-pickle@illinois.edu
217-244-2827
University of Illinois College of Agricultural, Consumer and Environmental Sciences
Source:Eurekalert

Related biology news :

1. Scientists find new twist on drug screening to treat common childhood cancer
2. Scientists uncover Achilles heel of chronic inflammatory pain
3. Scientists successfully use human induced pluripotent stem cells to treat Parkinsons in rodents
4. Scientists reveal new targets for anti-angiogenesis drugs
5. Scripps Research scientists uncover possible cocaine addiction trigger
6. Free statins with fast food could neutralize heart risk, scientists say
7. Scientists discover oldest evidence of human stone tool use and meat-eating
8. Scientists identify DNA that may contribute to each persons uniqueness
9. Common orchid gives scientists hope in face of climate change
10. Scientists show theres nothing boring about watching paint dry
11. The jellyfish-like salp: Most efficient filter-feeder in the deep, scientists discover
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... , June 22, 2016   Acuant ... and verification solutions, has partnered with RightCrowd ... solutions for Visitor Management, Self-Service Kiosks and ... products that add functional enhancements to existing ... corporations and venues with an automated ID ...
(Date:6/16/2016)... 16, 2016 The global ... to reach USD 1.83 billion by 2024, according ... Inc. Technological proliferation and increasing demand in commercial ... to drive the market growth.      ... The development of advanced multimodal techniques for biometric ...
(Date:6/7/2016)...  Syngrafii Inc. and San Antonio Credit Union ... integrating Syngrafii,s patented LongPen™ eSignature "Wet" solution into ... result in greater convenience for SACU members and ... existing document workflow and compliance requirements. ... Highlights: ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016  Sequenom, Inc. (NASDAQ: ... healthier lives through the development of innovative products and ... the United States denied its petition ... claims of Sequenom,s U.S. Patent No. 6,258,540 (",540 Patent") ... established by the Supreme Court,s Mayo Collaborative Services v. ...
(Date:6/27/2016)...  Liquid Biotech USA , ... Sponsored Research Agreement with The University of Pennsylvania ... cancer patients.  The funding will be used to ... clinical outcomes in cancer patients undergoing a variety ... employed to support the design of a therapeutic, ...
(Date:6/24/2016)... ... 24, 2016 , ... Researchers at the Universita Politecnica delle Marche in Ancona ... or pleural mesothelioma. Their findings are the subject of a new article on the ... are signposts in the blood, lung fluid or tissue of mesothelioma patients that can ...
(Date:6/23/2016)... A person commits a crime, and the detective ... the criminal down. An outbreak of foodborne illness ... (FDA) uses DNA evidence to track down the bacteria that ... It,s not. The FDA has increasingly used a complex, cutting-edge ... illnesses. Put as simply as possible, whole genome sequencing is ...
Breaking Biology Technology: