Navigation Links
Scientific sleuths pinpoint the guilty coral killers
Date:11/23/2011

The elusive culprits that are killing countless coral reefs around the world can now be nabbed with technology normally used to diagnose human diseases, marine researchers say.

Coral researchers and reef managers will be able to identify coral infections using a new method that allows them to classify specific diseases based on the presence of microbes.

This could lead to more effective action to reduce the impact of disease on the world's imperilled coral reefs.

"Current classification of coral diseases is mostly based on a description of how the coral has deteriorated, such as the pattern of tissue loss and abnormal colours," says Joseph Pollock, a PhD student at the ARC Centre of Excellence for Coral Reef Studies. "This is an ineffective way to identify coral diseases because different diseases can often look very similar. For instance, in the Caribbean alone, more than six "white" diseases show the same characteristics of tissue loss exposing white coral skeletons.

Coral diseases can be caused by a number of different microbes, including viruses, bacteria and fungi. Knowing exactly which toxic organism leads to a particular disease is therefore important for accurate diagnosis and for planning how to manage or control its impact.

One of Pollock's supervisors, David Bourne from the Australian Institute of Marine Science, says that the recent worldwide decline of coral reefs has been accompanied by increased disease, creating an urgent need for a deeper understanding of the various diseases, including what harmful bacteria and viruses contribute to different coral diseases, what triggers them and how they spread.

"Instead of relying on appearances to tell us what disease the corals have, we need to determine what's happening to them before the symptoms show. This will help us to control, or reduce the impacts."

By applying a diagnostic technology commonly used in human disease identification or in forensics, Mr Pollock has found a diagnostic method that can accurately detect and quantify the coral pathogens in a sample of diseased coral.

"The technology is called quantitative-PCR (qPCR) and is often used in human medical research. qPCR works as a genetic fingerprinting technique that both detects and quantifies a specific DNA molecule in a sample. It can detect pathogens at even very low levels as few as a couple of bacteria in a cup of seawater," Mr Pollock says.

Apart from testing corals for the presence of pathogens, researchers can also use the technology on water samples to gauge the general health of the wider coral reef environment, Mr Pollock says.

"This technology is sure to have many applications in the future", he says, "as marine environments are put under pressure by multiple impacts from rapid coastal development, declining water quality, and climate change".


'/>"/>
Contact: Joe Pollock
fjpollock@gmail.com
61-004-664-07141
ARC Centre of Excellence in Coral Reef Studies
Source:Eurekalert

Related biology news :

1. Scientific collaboration between India and Germany reaches new dimension
2. Jobs, jobs, jobs on the cover of weekly newsmagazine of worlds largest scientific society
3. Virtual institutes to support the scientific collaborations of the future
4. Oligonol receives Supplyside West 2011 scientific Excellence Award
5. Responsibilities of scientists underlined by scientific community
6. Elsevier congratulates editors of Stem Cells: Scientific Facts and Fiction upon receipt of awards
7. New book explores the evolution of a key scientific idea
8. Scientific support for food security and global governance
9. A scientific go for commercial production of vitamin-D enhanced mushrooms
10. Natural History Museum of Los Angeles County makes scientific history with pregnant plesiosaur
11. Einstein offers easy-to-use genome analyzer to scientific community
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/2/2016)... , Feb. 2, 2016  Based on ... Frost & Sullivan recognizes US-based Intelligent Retinal Imaging ... & Sullivan Award for New Product Innovation. IRIS, ... North America , is poised ... rapidly growing diabetic retinopathy market. The IRIS technology ...
(Date:1/28/2016)... Jan. 28, 2016 Synaptics (NASDAQ: SYNA ), a ... its second quarter ended December 31, 2015. ... of fiscal 2016 increased 2 percent compared to the comparable quarter ... of fiscal 2016 was $35.0 million, or $0.93 per diluted share. ... income for the first quarter of fiscal 2016 grew 9 percent ...
(Date:1/22/2016)... 2016 http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ... the  "Global Behavioral Biometric Market 2016-2020" ... http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ) has announced the ... Market 2016-2020"  report to their offering. ... http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ) has announced the addition ...
Breaking Biology News(10 mins):
(Date:2/10/2016)... ... , ... LATHAM, NEW YORK... Marktech Optoelectronics will feature their new ... San Francisco’s Moscone Center from February 16-18, 2016, and at the healthcare-focused BiOS Expo ... PIN diode standard packages feature a TO-46 metal can with active areas of 1.0mm ...
(Date:2/10/2016)... ... February 10, 2016 , ... PatientCrossroads announces that ... secure online PatientCrossroads platform, has exceeded both its one-year and overall recruitment goals ... study, which seeks to advance understanding of the hereditary risks for certain kinds ...
(Date:2/10/2016)... ... February 10, 2016 , ... ... announced a new agreement with Singapore-based Global Stem Cells Network (GSCN) and its ... Thailand and Singapore in the latest adipose and bone marrow therapies. , ...
(Date:2/10/2016)... (PRWEB) , ... February 09, 2016 , ... ... services and current winner of the Highest Overall Customer Rating Award from ... all of its business units across the USA, Canada, Mexico and China. , ...
Breaking Biology Technology: