Navigation Links
Scavenging energy waste to turn water into hydrogen fuel
Date:3/11/2010

MADISON Materials scientists at the University of Wisconsin-Madison have designed a way to harvest small amounts of waste energy and harness them to turn water into usable hydrogen fuel.

The process is simple, efficient and recycles otherwise-wasted energy into a useable form.

"This study provides a simple and cost-effective technology for direct water splitting that may generate hydrogen fuels by scavenging energy wastes such as noise or stray vibrations from the environment," the authors write in a new paper, published March 2 in the Journal of Physical Chemistry Letters. "This new discovery may have potential implications in solving the challenging energy and environmental issues that we are facing today and in the future."

The researchers, led by UW-Madison geologist and crystal specialist Huifang Xu, grew nanocrystals of two common crystals, zinc oxide and barium titanate, and placed them in water. When pulsed with ultrasonic vibrations, the nanofibers flexed and catalyzed a chemical reaction to split the water molecules into hydrogen and oxygen.

When the fibers bend, asymmetries in their crystal structures generate positive and negative charges and create an electrical potential. This phenomenon, called the piezoelectric effect, has been well known in certain crystals for more than a century and is the driving force behind quartz clocks and other applications.

Xu and his colleagues applied the same idea to the nanocrystal fibers. "The bulk materials are brittle, but at the nanoscale they are flexible," he says, like the difference between fiberglass and a pane of glass.

Smaller fibers bend more easily than larger crystals and therefore also produce electric charges easily. So far, the researchers have achieved an impressive 18 percent efficiency with the nanocrystals, higher than most experimental energy sources.

In addition, Xu says, "because we can tune the fiber and plate sizes, we can use even small amounts of [mechanical] noise like a vibration or water flowing to bend the fibers and plates. With this kind of technology, we can scavenge energy waste and convert it into useful chemical energy."

Rather than harvest this electrical energy directly, the scientists took a novel approach and used the energy to break the chemical bonds in water and produce oxygen and hydrogen gas.

"This is a new phenomenon, converting mechanical energy directly to chemical energy," Xu says, calling it a piezoelectrochemical (PZEC) effect.

The chemical energy of hydrogen fuel is more stable than the electric charge, he explains. It is relatively easy to store and will not lose potency over time.

With the right technology, Xu envisions this method being useful for generating small amounts of power from a multitude of small sources for example, walking could charge a cell phone or music player and breezes could power streetlights.

"We have limited areas to collect large energy differences, like a waterfall or a big dam," he says. "But we have lots of places with small energies. If we can harvest that energy, it would be tremendous."


'/>"/>

Contact: Huifang Xu
hfxu@geology.wisc.edu
608-265-5887
University of Wisconsin-Madison
Source:Eurekalert

Related biology news :

1. A new energy source from the common pea
2. New process yields high-energy-density, plant-based transportation fuel
3. Shifting cellular energy metabolism may help treat cardiovascular disease
4. Queens researchers propose rethinking renewable energy strategy
5. First wild grass species and model system for energy crops sequenced
6. Mother bats expert at saving energy
7. Carnegie Mellon first to measure energy released from a virus during infection
8. Habit-learning device will lower energy bills under new clean energy cashback scheme
9. According to new survey, Americans support strong climate, energy policies
10. Story tips from the US Department of Energy’s Oak Ridge National Laboratory February 2010
11. Green energy management
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/3/2016)... 2016  Neurotechnology, a provider of high-precision biometric ... Biometric Identification System (ABIS) , a complete system ... ABIS can process multiple complex biometric transactions with ... fingerprint, face or iris biometrics. It leverages the ... MegaMatcher Accelerator , which have been used ...
(Date:4/28/2016)... -- First quarter 2016:   , Revenues ... first quarter of 2015 The gross margin was 49% ... and the operating margin was 40% (-13) Earnings per ... from operations was SEK 249.9 M (21.2) , Outlook ... 7,000-8,500 M. The operating margin for 2016 is estimated ...
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
Breaking Biology News(10 mins):
(Date:5/26/2016)... San Diego, CA (PRWEB) , ... May 26, ... ... assay development and manufacturing company, today announced several positive developments that position the ... As a result of the transaction, Craig F. Kinghorn has been appointed ...
(Date:5/25/2016)... ... May 25, 2016 , ... Founder of the Fitzmaurice Hand ... and surgery of the hand by the National Board of Physicians and Surgeons, ... and beyond in his pursuit of providing the most comprehensive, effective treatment for ...
(Date:5/25/2016)... ... May 25, 2016 , ... Biohaven Pharmaceutical Holding Company ... granted the company’s orphan drug designation request covering BHV-4157 for the treatment of ... the FDA. , Spinocerebellar ataxia is a rare, debilitating neurodegenerative disorder that ...
(Date:5/23/2016)... ... May 23, 2016 , ... The need for blood donations in South Texas and across ... South Texas Blood & Tissue Center, blood donations are on the decline. In fact, donations ... are down 21 percent in South Texas in the last four years alone. , There ...
Breaking Biology Technology: