Navigation Links
Scaffold gradients: Finding the right environment for developing cells
Date:5/27/2010

People often have strong opinions on the "right" firmness of mattresses for themselves, and, as it turns out, some cell types have similar preferences for their support structures. Now a research team from the National Institute of Standards and Technology (NIST) and the National Institutes of Health (NIH) has developed a way to offer cells a three-dimensional scaffold that varies over a broad range of degrees of stiffness to determine where they develop best. Their recently published technique* is a way to rapidly optimize 3D cell growth media to meet the developmental needs of specific cell types for a wide variety of potential tissue-replacement therapies.

Tissue engineering is a relatively new field that is developing methods to grow or regenerate bodily tissuesskin, bone, cartilage, blood vessels, perhaps one day even whole organsto replace those damaged by injury or disease. One of the key challenges in the field is developing appropriate three-dimensional "scaffolds," artificial materials that can hold tissue progenitor cells and allow them to be nurtured and supported while they multiply and develop into desired tissues. Research has shown that cells often need to develop in a 3D environment if they are to mature and differentiate properly.

Hydrogelsmost familiar for their use in soft contact lensesare a promising material for tissue scaffolds. They consist of a loose network of polymer chains that is swollen with water; in fact, like the majority of the body's tissues, they are mostly water.

But, says NIST materials scientist Kaushik Chatterjee, deciding on a hydrogel is just the beginning. "Now you've got these gels, what sort of properties do you want? What gets you the best kind of whatever tissue you're afterin our case, bone? We focused on stiffness because cells are known to sense and respond to changes in the stiffness of their environment."

To test this, the research team developed a method to create samples of a typical hydrogel used in biomedical research, PEGDM**, where the stiffness of the gel increases smoothly from one end of the sample to the other. This approach, using smoothly varying gradients of compounds to test many possible combinations simultaneously, is called combinatorial screening. NIST has pioneered such techniques for a variety of materials problems***, but this research is one of the first applications of combinatorial screening to 3D scaffolds for tissue engineering. The team tested the technique on mouse osteoblastscells responsible for building bonemixed in with the PEGDM gel. Interestingly, although cell survival rates were higher at the softer end of the test strips and got progressively worse towards the stiffer ends, cell differentiation and mineralization, which are measures of how well the cells actually develop into bone tissue, did the reverse. Fewer cells survive in a stiff gel, but those that do are much more active in building bone. That result, of course, is specific to osteoblasts, says Chatterjee, "These are bone cells and they seem to like the stiffer environment more than softer ones, but you could apply something similar to, say, nerve cells, and they might like the softer ones more."

In addition, the researchers note, the gel stiffness gradient induced a matching gradient in the tissue mineralization. This is potentially important, they say, because tissue gradients often occur naturally at the interfaces of, for example, teeth or ligaments, so 3D scaffold gradients could be a valuable tool for engineering graded tissues for regenerative medicine.


'/>"/>

Contact: Michael Baum
michael.baum@nist.gov
301-975-2763
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. Smart orthopedic implants and self-fitting tissue scaffolding created by UMMS researchers
2. MDC researchers identify a scaffold regulating protein disposal
3. Spaghetti scaffolding could help grow skin in labs
4. Non-wovens as scaffolds for artificial tissue
5. MIT: New tissue scaffold regrows cartilage and bone
6. Smart scaffolds may help heal broken hearts
7. Hydrogels provide scaffolding for growth of bone cells
8. Scientists discover a molecular scaffold that guides connections between brain cells
9. Can micro-scaffolding help stem cells rebuild the brain after stroke?
10. Scientists ask whether microscaffolding can help stem cells rebuild brain after stroke damage
11. Finding the soft spot
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Scaffold gradients: Finding the right environment for developing cells
(Date:4/5/2017)... 5, 2017  The Allen Institute for Cell Science ... a one-of-a-kind portal and dynamic digital window into the ... the first application of deep learning to create predictive ... lines and a growing suite of powerful tools. The ... and future publicly available resources created and shared by ...
(Date:4/5/2017)... 2017 KEY FINDINGS The global ... a CAGR of 25.76% during the forecast period of ... factor for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is ... geography. The stem cell market of the product is ...
(Date:4/3/2017)... 2017  Data captured by IsoCode, IsoPlexis ... a statistically significant association between the potency ... and objective response of cancer patients post-treatment. ... whether cancer patients will respond to CAR-T ... as to improve both pre-infusion potency testing and ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... LAGUNA HILLS, Calif. , Oct. 11, 2017 /PRNewswire/ ... London (ICR) and University of ... tool to risk-stratify patients with multiple myeloma (MM), in a ... . The University of Leeds is ... Myeloma UK, and ICR will perform the testing services to ...
(Date:10/11/2017)... ... October 11, 2017 , ... A new study ... in frozen and fresh in vitro fertilization (IVF) transfer cycles. The ... IVF success. , After comparing the results from the fresh and frozen transfer ...
(Date:10/10/2017)... ... October 10, 2017 , ... San Diego-based team building and cooking events ... announced today. The bold new look is part of a transformation to increase ... a significant growth period. , It will also expand its service offering from its ...
(Date:10/10/2017)... ... October 10, 2017 , ... For the ... won a US2020 STEM Mentoring Award. Representatives of the FirstHand program travelled to ... Experience from US2020. , US2020’s mission is to change the trajectory of STEM ...
Breaking Biology Technology: