Navigation Links
Sardines and horse mackerel identified using forensic techniques
Date:5/24/2011

A team of researchers from Galicia in Spain have used forensic mitochondrial DNA species identification techniques to distinguish between sardines and horse mackerel. This method makes it possible to genetically differentiate between the fish, even if they are canned or processed, which makes it easier to monitor the degree to which fisheries resources are being exploited.

DNA from the mitochondria cell organelles is ideal for distinguishing between species. One of its components in particular, cytochrome b, is a genetic marker that scientists use to establish relationships between genera and families, and is also used by some forensic laboratories to identify animals that appear at crime scenes (cats or insects, for example).

Now, for the first time, researchers from the National Association of Manufacturers of Canned Fish and Shellfish (ANFACO-CECOPESCA, Spain) have used this technique in order to genetically identify small pelagic (non-coastal) species, such as sardines and horse mackerel. This study was supported by the European Fisheries Fund (EFF) and Spain's Ministry of the Environment and Rural and Marine Affairs (MARM).

"These molecular tools represent a great step forward for the sector, since they enable fisheries imports to be monitored and tracked, and also ensure they are correctly labelled", Montserrat Espieira, a biologist for ANFACO-CECOPESCA and lead researcher of the study, tells SINC.

By using this method, the team was able to identify more than 20 species from the sardine group (genera such as Sardina, Sardinella, Clupea, Ophistonoma and Ilisha) and a similar number of horse mackerel species (Trachurus, Caranx, Mullus, Rastrelliger and others), originating from seas all over the world.

The methodology involved gathering a sample of mitochondrial DNA from the fish (even if it was canned or processed), amplifying a fragment of cytochrome b (using a polymerase chain reaction PCR) and, lastly, carrying out a phylogenetic analysis by obtaining a "forensically informative nucleotide sequencing" (FINS).

The research on the sardines was published this month in the journal European Food Research and Technology, while the one on the horse mackerel was issued in March in the Journal of Agricultural and Food Chemistry.

The researchers are now focusing on analysing the distinct organoleptic, microbiological, physical-chemical and nutritional properties of the species analysed, and are also looking into whether some currently unexploited species could be of interest from a consumer perspective. "The end goal is to improve the management of fisheries resources and ensure they are sustainably exploited", explains Espieira.

The team is also developing rapid molecular identification methodologies (based on the Real Time-PCR technique), which will make it possible to distinguish between the most commercially-valuable small pelagic fish species the European anchovy (Engraulis encrasicolus), the European sardine (Sardina pilchardus) and the main species of horse mackerel (Trachurus trachurus) simply and in less than three hours.


'/>"/>

Contact: SINC
info@plataformasinc.es
34-914-251-820
FECYT - Spanish Foundation for Science and Technology
Source:Eurekalert

Related biology news :

1. Horse blind date could lead to loss of foal
2. Canadian researchers first worldwide to generate pluripotent stem cells from horses
3. Sleeping Trojan horse to aid imaging of diseased cells
4. Trojan Horse ploy to sneak protective drug into brains of stroke patients
5. Climate change affects horseshoe crab numbers
6. Training the trainers: How to minimize stress when horses are first ridden
7. Would a molecular horse trot, pace or glide across a surface?
8. Climate change implicated in decline of horseshoe crabs
9. Trojan Horse attack on native lupine
10. Research develops simple recipe for fungus-free horseradish
11. Mutant gene link to West Nile virus in horses
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/22/2016)... , November 22, 2016 According to the ... IRIS, Palm Print, Face, Vein, Signature, Voice), Multi-Factor), Component (Hardware and Software), ... published by MarketsandMarkets, the market is expected to grow from USD 10.74 ... CAGR of 16.79% between 2016 and 2022. ... ...
(Date:11/17/2016)...  AIC announces that it has just released a new white paper authored by ... plus high speed data transfer storage solutions. Photo - http://photos.prnewswire.com/prnh/20161116/440463 ... ... ... Setting up a high performance computing or HPC system can ...
(Date:11/14/2016)... Calif. , Nov. 14, 2016 /PRNewswire/ ... biometric identification market, Frost & Sullivan recognizes ... & Sullivan Award for Visionary Innovation Leadership. ... in the biometric identification market by pioneering ... verification solution for instant, seamless, and non-invasive ...
Breaking Biology News(10 mins):
(Date:12/7/2016)... ... December 07, 2016 , ... Cambrian Innovation ... industrial facilities, today announced that one of the nation’s fastest growing craft breweries, ... water-energy purchase agreement (WEPA). Under the WEPA, a first for the industrial wastewater ...
(Date:12/6/2016)... AUSTIN, Texas , Dec. 6, 2016 ... Naturopathica for its adoption of arnica ( Arnica ... provides support to ABC,s HerbMedPro database, ... to important scientific and clinical research data on ... 250 popular herbs. Naturopathica, a wellness ...
(Date:12/6/2016)... NY (PRWEB) , ... December 06, 2016 , ... ... integrator of custom industrial automation and IT solutions, today announced the company has ... has reliably delivered professionally executed automation and control systems integration services to leading ...
(Date:12/6/2016)... -- Zimmer Biomet Holdings, Inc. (NYSE and SIX: ... of its previously-announced cash tender offers (the "Offers") ... accrued and unpaid interest to, but not including, ... expenses related to the Offers) (the "Maximum Tender ... table below (collectively, the "Notes"). The terms and ...
Breaking Biology Technology: