Navigation Links
Sardines and horse mackerel identified using forensic techniques

A team of researchers from Galicia in Spain have used forensic mitochondrial DNA species identification techniques to distinguish between sardines and horse mackerel. This method makes it possible to genetically differentiate between the fish, even if they are canned or processed, which makes it easier to monitor the degree to which fisheries resources are being exploited.

DNA from the mitochondria cell organelles is ideal for distinguishing between species. One of its components in particular, cytochrome b, is a genetic marker that scientists use to establish relationships between genera and families, and is also used by some forensic laboratories to identify animals that appear at crime scenes (cats or insects, for example).

Now, for the first time, researchers from the National Association of Manufacturers of Canned Fish and Shellfish (ANFACO-CECOPESCA, Spain) have used this technique in order to genetically identify small pelagic (non-coastal) species, such as sardines and horse mackerel. This study was supported by the European Fisheries Fund (EFF) and Spain's Ministry of the Environment and Rural and Marine Affairs (MARM).

"These molecular tools represent a great step forward for the sector, since they enable fisheries imports to be monitored and tracked, and also ensure they are correctly labelled", Montserrat Espieira, a biologist for ANFACO-CECOPESCA and lead researcher of the study, tells SINC.

By using this method, the team was able to identify more than 20 species from the sardine group (genera such as Sardina, Sardinella, Clupea, Ophistonoma and Ilisha) and a similar number of horse mackerel species (Trachurus, Caranx, Mullus, Rastrelliger and others), originating from seas all over the world.

The methodology involved gathering a sample of mitochondrial DNA from the fish (even if it was canned or processed), amplifying a fragment of cytochrome b (using a polymerase chain reaction PCR) and, lastly, carrying out a phylogenetic analysis by obtaining a "forensically informative nucleotide sequencing" (FINS).

The research on the sardines was published this month in the journal European Food Research and Technology, while the one on the horse mackerel was issued in March in the Journal of Agricultural and Food Chemistry.

The researchers are now focusing on analysing the distinct organoleptic, microbiological, physical-chemical and nutritional properties of the species analysed, and are also looking into whether some currently unexploited species could be of interest from a consumer perspective. "The end goal is to improve the management of fisheries resources and ensure they are sustainably exploited", explains Espieira.

The team is also developing rapid molecular identification methodologies (based on the Real Time-PCR technique), which will make it possible to distinguish between the most commercially-valuable small pelagic fish species the European anchovy (Engraulis encrasicolus), the European sardine (Sardina pilchardus) and the main species of horse mackerel (Trachurus trachurus) simply and in less than three hours.


Contact: SINC
FECYT - Spanish Foundation for Science and Technology

Related biology news :

1. Horse blind date could lead to loss of foal
2. Canadian researchers first worldwide to generate pluripotent stem cells from horses
3. Sleeping Trojan horse to aid imaging of diseased cells
4. Trojan Horse ploy to sneak protective drug into brains of stroke patients
5. Climate change affects horseshoe crab numbers
6. Training the trainers: How to minimize stress when horses are first ridden
7. Would a molecular horse trot, pace or glide across a surface?
8. Climate change implicated in decline of horseshoe crabs
9. Trojan Horse attack on native lupine
10. Research develops simple recipe for fungus-free horseradish
11. Mutant gene link to West Nile virus in horses
Post Your Comments:
(Date:11/17/2015)... Paris from 17 th until 19 ... from 17 th until 19 th November 2015. ... invented the first combined scanner in the world which scans ... now two different scanners were required: one for passports and ... the same surface. This innovation is an ideal solution for ...
(Date:11/17/2015)... Calif. , Nov. 17, 2015  Vigilant Solutions ... has joined its Board of Directors. ... Board after recently retiring from the partnership at TPG ... 107 companies with over $140 Billion in revenue.  He ... improvement across all the TPG companies, from 1997 to ...
(Date:11/16/2015)... SAN JOSE, Calif. , Nov 16, 2015 ... leading developer of human interface solutions, today announced ... new Synaptics TouchView ™ touch controller and ... the architectural revolution of smartphones. These new TDDI ... and include TD4100 (HD resolution), TD4302 (WQHD resolution), ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: AEZ) (the ... the Toronto Stock Exchange, confirms that as of the ... developments that would cause the recent movements in the ... --> About Aeterna Zentaris Inc. ... Aeterna Zentaris is a specialty biopharmaceutical company engaged in ...
(Date:11/24/2015)... ... 2015 , ... The Academy of Model Aeronautics (AMA), led by its Executive ... Multirotor Grand Prix, to represent the First–Person View (FPV) racing community. , FPV racing ... this type of racing and several new model aviation pilots have joined the community ...
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris ... today that the remaining 11,000 post-share consolidation (or ... Warrants (the "Series B Warrants") subject to the ... on November 23, 2015, which will result in ... giving effect to the issuance of such shares, ...
(Date:11/24/2015)... , ... November 24, 2015 , ... ... OrthoAccel® Technologies, Inc., on being named to Deloitte's 2015 Technology Fast 500 list ... facility, OrthoAccel manufactures AcceleDent®, a FDA-cleared, Class II medical device that speeds up ...
Breaking Biology Technology: