Navigation Links
Sardines and horse mackerel identified using forensic techniques
Date:5/24/2011

A team of researchers from Galicia in Spain have used forensic mitochondrial DNA species identification techniques to distinguish between sardines and horse mackerel. This method makes it possible to genetically differentiate between the fish, even if they are canned or processed, which makes it easier to monitor the degree to which fisheries resources are being exploited.

DNA from the mitochondria cell organelles is ideal for distinguishing between species. One of its components in particular, cytochrome b, is a genetic marker that scientists use to establish relationships between genera and families, and is also used by some forensic laboratories to identify animals that appear at crime scenes (cats or insects, for example).

Now, for the first time, researchers from the National Association of Manufacturers of Canned Fish and Shellfish (ANFACO-CECOPESCA, Spain) have used this technique in order to genetically identify small pelagic (non-coastal) species, such as sardines and horse mackerel. This study was supported by the European Fisheries Fund (EFF) and Spain's Ministry of the Environment and Rural and Marine Affairs (MARM).

"These molecular tools represent a great step forward for the sector, since they enable fisheries imports to be monitored and tracked, and also ensure they are correctly labelled", Montserrat Espieira, a biologist for ANFACO-CECOPESCA and lead researcher of the study, tells SINC.

By using this method, the team was able to identify more than 20 species from the sardine group (genera such as Sardina, Sardinella, Clupea, Ophistonoma and Ilisha) and a similar number of horse mackerel species (Trachurus, Caranx, Mullus, Rastrelliger and others), originating from seas all over the world.

The methodology involved gathering a sample of mitochondrial DNA from the fish (even if it was canned or processed), amplifying a fragment of cytochrome b (using a polymerase chain reaction PCR) and, lastly, carrying out a phylogenetic analysis by obtaining a "forensically informative nucleotide sequencing" (FINS).

The research on the sardines was published this month in the journal European Food Research and Technology, while the one on the horse mackerel was issued in March in the Journal of Agricultural and Food Chemistry.

The researchers are now focusing on analysing the distinct organoleptic, microbiological, physical-chemical and nutritional properties of the species analysed, and are also looking into whether some currently unexploited species could be of interest from a consumer perspective. "The end goal is to improve the management of fisheries resources and ensure they are sustainably exploited", explains Espieira.

The team is also developing rapid molecular identification methodologies (based on the Real Time-PCR technique), which will make it possible to distinguish between the most commercially-valuable small pelagic fish species the European anchovy (Engraulis encrasicolus), the European sardine (Sardina pilchardus) and the main species of horse mackerel (Trachurus trachurus) simply and in less than three hours.


'/>"/>

Contact: SINC
info@plataformasinc.es
34-914-251-820
FECYT - Spanish Foundation for Science and Technology
Source:Eurekalert

Related biology news :

1. Horse blind date could lead to loss of foal
2. Canadian researchers first worldwide to generate pluripotent stem cells from horses
3. Sleeping Trojan horse to aid imaging of diseased cells
4. Trojan Horse ploy to sneak protective drug into brains of stroke patients
5. Climate change affects horseshoe crab numbers
6. Training the trainers: How to minimize stress when horses are first ridden
7. Would a molecular horse trot, pace or glide across a surface?
8. Climate change implicated in decline of horseshoe crabs
9. Trojan Horse attack on native lupine
10. Research develops simple recipe for fungus-free horseradish
11. Mutant gene link to West Nile virus in horses
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
(Date:4/28/2016)... 2016 First quarter 2016:   ... with the first quarter of 2015 The gross margin ... (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) , ... unchanged, SEK 7,000-8,500 M. The operating margin for 2016 ...
(Date:4/26/2016)... 27, 2016 Research and ... Biometrics Market 2016-2020"  report to their offering.  , ... The analysts forecast the global multimodal biometrics ... during the period 2016-2020.  Multimodal biometrics ... such as the healthcare, BFSI, transportation, automotive, and ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016  Global demand for enzymes ... through 2020 to $7.2 billion.  This market includes ... cleaning products, biofuel production, animal feed, and other ... and biocatalysts). Food and beverages will remain the ... increasing consumption of products containing enzymes in developing ...
(Date:6/27/2016)... ... June 27, 2016 , ... ... findings on what they believe could be a new and helpful biomarker for ... research. Click here to read it now. , Biomarkers are components ...
(Date:6/27/2016)... , ... June 27, 2016 , ... ... for Amgen, will join the faculty of the University of North Carolina ... professor of strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on the ...
(Date:6/24/2016)... , June 24, 2016  Regular discussions on a ... take place between the two entities said Poloz. ... Ottawa , he pointed to the country,s ... the federal government. ... said, "Both institutions have common economic goals, why not sit ...
Breaking Biology Technology: